/third_party/mindspore/mindspore/nn/layer/ |
D | rnns.py | 158 def variable_recurrent(self, x, h, seq_length, w_ih, w_hh, b_ih, b_hh): argument 168 seq_length = P.Cast()(seq_length, mstype.float32) 169 seq_length = P.BroadcastTo((hidden_size, -1))(seq_length) 170 seq_length = P.Cast()(seq_length, mstype.int32) 171 seq_length = P.Transpose()(seq_length, (1, 0)) 180 seq_cond = seq_length > t 194 def construct(self, x, h, seq_length, w_ih, w_hh, b_ih, b_hh): argument 195 if seq_length is None: 197 return self.variable_recurrent(x, h, seq_length, w_ih, w_hh, b_ih, b_hh) 275 def _stacked_bi_dynamic_rnn(self, x, h, seq_length): argument [all …]
|
/third_party/mindspore/tests/st/fl/albert/src/ |
D | dataset.py | 28 def __init__(self, input_ids, input_mask, segment_ids, label_id, seq_length=None): argument 33 self.seq_length = seq_length 44 seq_length = len(tokens) 45 if seq_length > max_seq_length - 2: 47 rand_index = np.random.randint(0, seq_length) 48 tokens = [tokens[_] if _ < seq_length else tokens[_ - seq_length] 58 seq_length = len(input_ids) 74 seq_length=seq_length)) 137 np.array(feature.seq_length))
|
D | model.py | 59 seq_length=256, argument 92 self.seq_length = seq_length 151 self.shape = (-1, config.seq_length, config.embedding_size) 190 self.shape = (-1, config.seq_length, config.embedding_size) 390 self.from_seq_length = config.seq_length 391 self.to_seq_length = config.seq_length 416 self.shape_from = (-1, config.seq_length, config.num_attention_heads, self.size_per_head) 417 self.shape_to = (-1, config.seq_length, config.num_attention_heads, self.size_per_head) 435 self.shape_return = (-1, config.seq_length, config.hidden_size) 439 RelaPosEmbeddingsGenerator(length=config.seq_length, [all …]
|
D | config.py | 63 seq_length=8, 99 seq_length=8,
|
/third_party/mindspore/mindspore/parallel/nn/ |
D | layers.py | 486 seq_length=Validator.check_positive_int, 494 seq_length=1024, argument 505 self.seq_length = seq_length 510 self.block_num = seq_length // block_size 512 self.global_size = seq_length // 4 520 if self.seq_length != 1024: 531 global_mask_original = np.ones((self.seq_length, self.global_size), dtype=np.float16) 532 for i in range(self.seq_length): 538 …global_mask_fx = global_mask_original.reshape((self.seq_length // 16, 16, self.global_size // 16, … 541 …sk = global_mask.reshape((self.batch_size * self.global_size // 16, self.seq_length // 16, 16, 16)) [all …]
|
D | transformer.py | 432 @_args_type_validator_check(seq_length=Validator.check_positive_int, 434 def __init__(self, seq_length, parallel_config=default_dpmp_config): argument 436 self.seq_length = seq_length 442 ones = np.ones(shape=(seq_length, seq_length)) 450 … _check_input_shape_value(F.shape(input_mask), 1, "input_mask", self.cls_name, self.seq_length) 790 self.seq_length = src_seq_length 791 …self.attention_mask = Tensor(np.tril(np.ones(shape=(self.seq_length, self.seq_length))), mstype.in… 863 current_key = self.mul1(self.tile(key, (1, 1, 1, self.seq_length)), 865 current_value = self.mul1(self.tile(value, (1, 1, self.seq_length, 1)), 873 … attention_mask = F.reshape(self.attention_mask, (self.seq_length, self.seq_length, 1, 1)) [all …]
|
/third_party/mindspore/tests/st/networks/models/bert/src/ |
D | CRF.py | 40 def __init__(self, tag_to_index, batch_size=1, seq_length=128, is_training=True): argument 47 self.seq_length = seq_length 96 label2 = labels[:, :self.seq_length, :] 103 stop_value_index = labels[:, (self.seq_length-1):self.seq_length, :] 116 for idx in range(self.seq_length): 133 for idx in range(self.seq_length):
|
D | bert_model.py | 64 seq_length=128, argument 83 self.seq_length = seq_length 604 seq_length, argument 625 from_seq_length=seq_length, 626 to_seq_length=seq_length, 675 seq_length=512, argument 690 seq_length=seq_length, 744 seq_length, argument 764 seq_length=seq_length, 781 self.out_shape = (batch_size, seq_length, hidden_size) [all …]
|
D | config.py | 58 seq_length=128, 79 seq_length=128, 100 seq_length=512,
|
D | evaluation_config.py | 36 seq_length=128,
|
D | finetune_config.py | 56 seq_length=128,
|
/third_party/node/deps/icu-small/source/i18n/ |
D | csr2022.cpp | 49 int32_t seq_length = (int32_t)uprv_strlen((const char *) seq); in match_2022() local 51 if (textLen-i >= seq_length) { in match_2022() 53 while(j < seq_length) { in match_2022() 62 i += seq_length-1; in match_2022()
|
/third_party/skia/third_party/externals/icu/source/i18n/ |
D | csr2022.cpp | 49 int32_t seq_length = (int32_t)uprv_strlen((const char *) seq); in match_2022() local 51 if (textLen-i >= seq_length) { in match_2022() 53 while(j < seq_length) { in match_2022() 62 i += seq_length-1; in match_2022()
|
/third_party/flutter/skia/third_party/externals/icu/source/i18n/ |
D | csr2022.cpp | 49 int32_t seq_length = (int32_t)uprv_strlen((const char *) seq); in match_2022() local 51 if (textLen-i >= seq_length) { in match_2022() 53 while(j < seq_length) { in match_2022() 62 i += seq_length-1; in match_2022()
|
/third_party/icu/icu4c/source/i18n/ |
D | csr2022.cpp | 49 int32_t seq_length = (int32_t)uprv_strlen((const char *) seq); in match_2022() local 51 if (textLen-i >= seq_length) { in match_2022() 53 while(j < seq_length) { in match_2022() 62 i += seq_length-1; in match_2022()
|
/third_party/mindspore/mindspore/ccsrc/backend/kernel_compiler/cpu/nnacl/fp32/ |
D | reverse_sequence_fp32.c | 29 …int32_t seq_length = para->is_seq_length_int32_ ? *((int32_t *)input1 + batch) : *((int64_t *)inpu… in ReverseSequence() local 30 for (int n = 0; n < seq_length; ++n) { in ReverseSequence() 31 … const float *in_seq = in_batch + (seq_length - 1 - n) * para->input_stride_[para->seq_axis_]; in ReverseSequence()
|
/third_party/mindspore/tests/mindspore_test_framework/apps/ |
D | test_bert_check_gradient.py | 238 seq_length=128, 254 seq_length=128, 271 seq_length=128, 313 seq_length=128, 383 seq_length=128,
|
D | test_bert_compare_with_npy.py | 499 seq_length=128, 516 seq_length=128, 531 seq_length=128, 570 seq_length=128,
|
/third_party/mindspore/tests/ut/python/nn/ |
D | test_transformer.py | 113 seq_length=16, 128 model = TransformerEncoderLayer(batch_size=2, hidden_size=8, ffn_hidden_size=64, seq_length=16, 141 seq_length=16, 240 model = AttentionMask(seq_length=19) 247 seq_length=1024,
|
/third_party/mindspore/tests/ut/cpp/python_input/gtest_input/tbe/ |
D | tbe_json_creator_test.py | 62 def func_dynamic_rnn(x, w, b, seq_length, init_h, init_c): argument 63 return DynamicRNN(x, w, b, seq_length, init_h, init_c)
|
/third_party/mindspore/mindspore/ccsrc/transform/graph_ir/op_declare/ |
D | rnn_declare.cc | 63 … {4, INPUT_DESC(seq_length)}, {5, INPUT_DESC(init_h)}, {6, INPUT_DESC(init_c)}, 107 … {4, INPUT_DESC(bias_input)}, {5, INPUT_DESC(bias_hidden)}, {6, INPUT_DESC(seq_length)}, 129 {13, INPUT_DESC(seq_length)}, {14, INPUT_DESC(mask)}};
|
/third_party/mindspore/tests/st/fl/albert/ |
D | cloud_train.py | 194 input_ids = Tensor(np.zeros((train_cfg.batch_size, server_net_cfg.seq_length), np.int32)) 195 … attention_mask = Tensor(np.zeros((train_cfg.batch_size, server_net_cfg.seq_length), np.int32)) 196 … token_type_ids = Tensor(np.zeros((train_cfg.batch_size, server_net_cfg.seq_length), np.int32))
|
/third_party/mindspore/tests/st/model_zoo_tests/transformer/ |
D | test_transformer.py | 60 seq_length=128, 77 seq_length=128,
|
/third_party/mindspore/tests/ut/python/parallel/ |
D | test_parallel_transformer.py | 356 seq_length=16, 465 seq_length=1024, 484 seq_length=1024, 503 seq_length=1024, 522 seq_length=1024,
|
/third_party/mindspore/tests/perf_test/bert/ |
D | test_bert_train.py | 63 seq_length=128, 80 seq_length=128,
|