1# Using MindSpore Lite for Model Inference 2 3## When to Use 4 5MindSpore Lite is an AI engine that provides AI model inference for different hardware devices. It has been used in a wide range of fields, such as image classification, target recognition, facial recognition, and character recognition. 6 7This document describes the general development process for MindSpore Lite model inference. 8 9## Basic Concepts 10 11Before getting started, you need to understand the following basic concepts: 12 13**Tensor**: a special data structure that is similar to arrays and matrices. It is a basic data structure used in MindSpore Lite network operations. 14 15**Float16 inference**: a mode in which Float16 is used for inference. Float16, also called half-precision, uses 16 bits to represent a number. 16 17 18 19## Available APIs 20APIs involved in MindSpore Lite model inference are categorized into context APIs, model APIs, and tensor APIs. 21### Context APIs 22 23| API | Description | 24| ------------------ | ----------------- | 25|OH_AI_ContextHandle OH_AI_ContextCreate()|Creates a context object.| 26|void OH_AI_ContextSetThreadNum(OH_AI_ContextHandle context, int32_t thread_num)|Sets the number of runtime threads.| 27| void OH_AI_ContextSetThreadAffinityMode(OH_AI_ContextHandle context, int mode)|Sets the affinity mode for binding runtime threads to CPU cores, which are classified into large, medium, and small cores based on the CPU frequency. You only need to bind the large or medium cores, but not small cores.| 28|OH_AI_DeviceInfoHandle OH_AI_DeviceInfoCreate(OH_AI_DeviceType device_type)|Creates a runtime device information object.| 29|void OH_AI_ContextDestroy(OH_AI_ContextHandle *context)|Destroys a context object.| 30|void OH_AI_DeviceInfoSetEnableFP16(OH_AI_DeviceInfoHandle device_info, bool is_fp16)|Sets whether to enable float16 inference. This function is available only for CPU and GPU devices.| 31|void OH_AI_ContextAddDeviceInfo(OH_AI_ContextHandle context, OH_AI_DeviceInfoHandle device_info)|Adds a runtime device information object.| 32 33### Model APIs 34 35| API | Description | 36| ------------------ | ----------------- | 37|OH_AI_ModelHandle OH_AI_ModelCreate()|Creates a model object.| 38|OH_AI_Status OH_AI_ModelBuildFromFile(OH_AI_ModelHandle model, const char *model_path,OH_AI_ModelType odel_type, const OH_AI_ContextHandle model_context)|Loads and builds a MindSpore model from a model file.| 39|void OH_AI_ModelDestroy(OH_AI_ModelHandle *model)|Destroys a model object.| 40 41### Tensor APIs 42 43| API | Description | 44| ------------------ | ----------------- | 45|OH_AI_TensorHandleArray OH_AI_ModelGetInputs(const OH_AI_ModelHandle model)|Obtains the input tensor array structure of a model.| 46|int64_t OH_AI_TensorGetElementNum(const OH_AI_TensorHandle tensor)|Obtains the number of tensor elements.| 47|const char *OH_AI_TensorGetName(const OH_AI_TensorHandle tensor)|Obtains the name of a tensor.| 48|OH_AI_DataType OH_AI_TensorGetDataType(const OH_AI_TensorHandle tensor)|Obtains the tensor data type.| 49|void *OH_AI_TensorGetMutableData(const OH_AI_TensorHandle tensor)|Obtains the pointer to variable tensor data.| 50 51## How to Develop 52The following figure shows the development process for MindSpore Lite model inference. 53 54**Figure 1** Development process for MindSpore Lite model inference 55![how-to-use-mindspore-lite](figures/01.png) 56 57The development process consists of the following main steps: 58 591. Prepare the required model. 60 61 The required model can be downloaded directly or obtained using the model conversion tool. 62 63 - If the downloaded model is in the `.ms` format, you can use it directly for inference. The following uses the **mobilenetv2.ms** model as an example. 64 - If the downloaded model uses a third-party framework, such as TensorFlow, TensorFlow Lite, Caffe, or ONNX, you can use the [model conversion tool](https://www.mindspore.cn/lite/docs/en/r1.5/use/downloads.html#id1) to convert it to the `.ms` format. 65 662. Create a context, and set parameters such as the number of runtime threads and device type. 67 68 ```c 69 // Create a context, and set the number of runtime threads to 2 and the thread affinity mode to 1 (big cores first). 70 OH_AI_ContextHandle context = OH_AI_ContextCreate(); 71 if (context == NULL) { 72 printf("OH_AI_ContextCreate failed.\n"); 73 return OH_AI_STATUS_LITE_ERROR; 74 } 75 const int thread_num = 2; 76 OH_AI_ContextSetThreadNum(context, thread_num); 77 OH_AI_ContextSetThreadAffinityMode(context, 1); 78 // Set the device type to CPU, and disable Float16 inference. 79 OH_AI_DeviceInfoHandle cpu_device_info = OH_AI_DeviceInfoCreate(OH_AI_DEVICETYPE_CPU); 80 if (cpu_device_info == NULL) { 81 printf("OH_AI_DeviceInfoCreate failed.\n"); 82 OH_AI_ContextDestroy(&context); 83 return OH_AI_STATUS_LITE_ERROR; 84 } 85 OH_AI_DeviceInfoSetEnableFP16(cpu_device_info, false); 86 OH_AI_ContextAddDeviceInfo(context, cpu_device_info); 87 ``` 88 893. Create, load, and build the model. 90 91 Call **OH_AI_ModelBuildFromFile** to load and build the model. 92 93 In this example, the **argv[1]** parameter passed to **OH_AI_ModelBuildFromFile** indicates the specified model file path. 94 95 ```c 96 // Create a model. 97 OH_AI_ModelHandle model = OH_AI_ModelCreate(); 98 if (model == NULL) { 99 printf("OH_AI_ModelCreate failed.\n"); 100 OH_AI_ContextDestroy(&context); 101 return OH_AI_STATUS_LITE_ERROR; 102 } 103 104 // Load and build the model. The model type is OH_AI_ModelTypeMindIR. 105 int ret = OH_AI_ModelBuildFromFile(model, argv[1], OH_AI_ModelTypeMindIR, context); 106 if (ret != OH_AI_STATUS_SUCCESS) { 107 printf("OH_AI_ModelBuildFromFile failed, ret: %d.\n", ret); 108 OH_AI_ModelDestroy(&model); 109 return ret; 110 } 111 ``` 112 1134. Input data. 114 115 Before executing model inference, you need to populate data to the input tensor. In this example, random data is used to populate the model. 116 117 ```c 118 // Obtain the input tensor. 119 OH_AI_TensorHandleArray inputs = OH_AI_ModelGetInputs(model); 120 if (inputs.handle_list == NULL) { 121 printf("OH_AI_ModelGetInputs failed, ret: %d.\n", ret); 122 OH_AI_ModelDestroy(&model); 123 return ret; 124 } 125 // Use random data to populate the tensor. 126 ret = GenerateInputDataWithRandom(inputs); 127 if (ret != OH_AI_STATUS_SUCCESS) { 128 printf("GenerateInputDataWithRandom failed, ret: %d.\n", ret); 129 OH_AI_ModelDestroy(&model); 130 return ret; 131 } 132 ``` 133 1345. Execute model inference. 135 136 Call **OH_AI_ModelPredict** to perform model inference. 137 138 ```c 139 // Execute model inference. 140 OH_AI_TensorHandleArray outputs; 141 ret = OH_AI_ModelPredict(model, inputs, &outputs, NULL, NULL); 142 if (ret != OH_AI_STATUS_SUCCESS) { 143 printf("OH_AI_ModelPredict failed, ret: %d.\n", ret); 144 OH_AI_ModelDestroy(&model); 145 return ret; 146 } 147 ``` 148 1496. Obtain the output. 150 151 After model inference is complete, you can obtain the inference result through the output tensor. 152 153 ```c 154 // Obtain the output tensor and print the information. 155 for (size_t i = 0; i < outputs.handle_num; ++i) { 156 OH_AI_TensorHandle tensor = outputs.handle_list[i]; 157 int64_t element_num = OH_AI_TensorGetElementNum(tensor); 158 printf("Tensor name: %s, tensor size is %zu ,elements num: %lld.\n", OH_AI_TensorGetName(tensor), 159 OH_AI_TensorGetDataSize(tensor), element_num); 160 const float *data = (const float *)OH_AI_TensorGetData(tensor); 161 printf("output data is:\n"); 162 const int max_print_num = 50; 163 for (int j = 0; j < element_num && j <= max_print_num; ++j) { 164 printf("%f ", data[j]); 165 } 166 printf("\n"); 167 } 168 ``` 169 1707. Destroy the model. 171 172 If the MindSpore Lite inference framework is no longer needed, you need to destroy the created model. 173 174 ```c 175 // Destroy the model. 176 OH_AI_ModelDestroy(&model); 177 ``` 178 179## Verification 180 1811. Compile **CMakeLists.txt**. 182 183 ```cmake 184 cmake_minimum_required(VERSION 3.14) 185 project(Demo) 186 187 add_executable(demo main.c) 188 189 target_link_libraries( 190 demo 191 mindspore-lite.huawei 192 pthread 193 dl 194 ) 195 ``` 196 - To use ohos-sdk for cross compilation, you need to set the native toolchain path for the CMake tool as follows: `-DCMAKE_TOOLCHAIN_FILE="/xxx/ohos-sdk/linux/native/build/cmake/ohos.toolchain.cmake"`. 197 198 - The toolchain builds a 64-bit application by default. To build a 32-bit application, add the following configuration: `-DOHOS_ARCH="armeabi-v7a"`. 199 2002. Run the CMake tool. 201 202 - Use hdc_std to connect to the device and put **demo** and **mobilenetv2.ms** to the same directory on the board. 203 - Run the hdc_std shell command to access the device, go to the directory where **demo** is located, and run the following command: 204 205 ```shell 206 ./demo mobilenetv2.ms 207 ``` 208 209 The inference is successful if the output is similar to the following: 210 211 ```shell 212 # ./QuickStart ./mobilenetv2.ms 213 Tensor name: Softmax-65, tensor size is 4004 ,elements num: 1001. 214 output data is: 215 0.000018 0.000012 0.000026 0.000194 0.000156 0.001501 0.000240 0.000825 0.000016 0.000006 0.000007 0.000004 0.000004 0.000004 0.000015 0.000099 0.000011 0.000013 0.000005 0.000023 0.000004 0.000008 0.000003 0.000003 0.000008 0.000014 0.000012 0.000006 0.000019 0.000006 0.000018 0.000024 0.000010 0.000002 0.000028 0.000372 0.000010 0.000017 0.000008 0.000004 0.000007 0.000010 0.000007 0.000012 0.000005 0.000015 0.000007 0.000040 0.000004 0.000085 0.000023 216 ``` 217