1# Sensor 2 3 4## Overview 5 6### Function 7 8The sensor driver model shields the hardware difference and provides interfaces for the upper-layer sensor service to implement basic sensor capabilities, including querying the sensor list, enabling or disabling a sensor, subscribing to or unsubscribing from sensor data changes, and setting sensor attributes. Developed based on the Hardware Driver Foundation (HDF), the sensor driver model leverages the capabilities of the OS adaptation layer (OSAL) and platform driver interfaces (such as I2C, SPI, and UART buses) to shield the difference between OSs and platform bus resources, achieving "one-time development and multi-system deployment" of the sensor driver. The figure below shows the architecture of the sensor driver model. 9 10**Figure 1** Sensor driver model 11 12![Sensor driver model](figures/sensor_driver_model.png) 13 14### Basic Concepts 15 16Sensors are classified into the following types by sensor ID: 17 18- Medical sensors: The sensor IDs range from 128 to 160. 19 20- Traditional sensors: The sensor IDs are out of the range of 128 to 160. 21 22### Working Principles 23 24The following figure shows how a sensor driver works. 25 26**Figure 2** How a sensor driver works 27 28![How sensor driver works](figures/sensor_working.png) 29 30The following uses the acceleration sensor driver on the Hi3516D V300 development board of the standard system as an example to describe the driver loading and running process. 31 321. The sensor host reads the sensor device management configuration from **Sensor Host** in the **device_info.hcs** file. 332. The sensor host parses the sensor management configuration from the HCB database and associates the configuration with the sensor driver. 343. The sensor host loads and initializes the sensor manager driver. 354. The sensor manager driver publishes the sensor APIs for the hardware driver interface (HDI). 365. The sensor host reads the acceleration sensor driver configuration information from **Sensor Host** in the **device_info.hcs** configuration file. 376. The sensor host loads the acceleration sensor abstract driver and calls the initialization interface to allocate the sensor driver resources and create the data processing queue. 387. The sensor host reads the chipset driver configuration and private configuration of the acceleration sensor from the **accel_xxx_config.hcs** file. 398. The acceleration sensor chipset driver calls the common configuration parsing interface to parse the sensor attributes and registers. 409. The chipset driver detects sensors, allocates configuration resources to the acceleration sensor, and registers the acceleration sensor chipset interfaces. 4110. Upon successful sensor detection, the chipset driver instructs the abstract driver to register the acceleration sensor to the sensor manager driver. 42 43## Development Guidelines 44 45### When to Use 46 47- Data provided by the gravity and gyroscope sensors denotes the tilt and rotation of the device, which helps your application improve user experience in games. 48- Data provided by the proximity sensor denotes the distance between the device and a visible object, which enables the device to automatically turn on or off its screen accordingly to prevent accidental touch on the screen. For example, when the proximity sensor detects the user face approaches the earpiece during a call, it triggers backlight of the screen to be turned off. This prevents the screen from being accidentally touched and further reduces power consumption. 49- Data provided by the barometric pressure sensor helps your application accurately determine the altitude of the device. 50- Data provided by the ambient light sensor helps your device automatically adjust its backlight. 51- Data provided by the Hall effect sensor implements the smart cover mode of your device. When the smart cover is closed, a small window is opened on the phone to reduce power consumption. 52 53### Available APIs 54 55The sensor driver model offers the following APIs: 56 57- Sensor HDI APIs, for easier sensor service development 58 59- APIs for implementing sensor driver model capabilities 60 - APIs for loading, registering, and deregitering sensor drivers, and detecting sensors based on the HDF 61 - Unified driver API, register configuration parsing API, bus access abstract API, and platform abstract API for the same type of sensors 62 63- APIs to be implemented by developers 64 65 Based on the HDF Configuration Source (HCS) and differentiated configuration for sensors of the same type, you need to implement serialized configuration of sensor device parameters and some sensor device operation interfaces to simplify sensor driver development. 66 67The sensor driver model provides APIs for the hardware service to make sensor service development easier. See the table below. 68 69**Table 1** APIs of the sensor driver model 70 71| API| Description| 72| ----- | -------- | 73| int32_t GetAllSensors(struct SensorInformation **sensorInfo, int32_t *count) | Obtains information about all registered sensors in the system. The sensor information includes the sensor name, sensor vendor, firmware version, hardware version, sensor type ID, sensor ID, maximum range, accuracy, and power consumption.| 74| int32_t Enable(int32_t sensorId) | Enables a sensor. The subscriber can obtain sensor data only after the sensor is enabled.| 75| int32_t Disable(int32_t sensorId) | Disables a sensor.| 76| int32_t SetBatch(int32_t sensorId, int64_t samplingInterval, int64_t reportInterval) | Sets the sampling interval and data reporting interval for a sensor.| 77| int32_t SetMode(int32_t sensorId, int32_t mode) | Sets the data reporting mode for a sensor.| 78| int32_t SetOption(int32_t sensorId, uint32_t option) | Sets options for a sensor, including its range and accuracy.| 79| int32_t Register(int32_t groupId, RecordDataCallback cb) | Registers a sensor data callback based on the group ID.| 80| int32_t Unregister(int32_t groupId, RecordDataCallback cb) | Deregisters a sensor data callback based on the group ID.| 81 82 83 84The sensor driver model provides driver development APIs that do not require further implementation. See the table below. 85 86 **Table 2** Sensor driver development APIs 87 88| API| Description| 89| ----- | -------- | 90| int32_t AddSensorDevice(const struct SensorDeviceInfo *deviceInfo) | Adds a sensor of the current type to the sensor management module.| 91| int32_t DeleteSensorDevice(const struct SensorBasicInfo *sensorBaseInfo) | Deletes a sensor from the sensor management module.| 92| int32_t ReportSensorEvent(const struct SensorReportEvent *events) | Reports data of a specified sensor type.| 93| int32_t ReadSensor(struct SensorBusCfg *busCfg, uint16_t regAddr, uint8_t *data, uint16_t dataLen) | Reads sensor configuration data from the sensor register based on the bus configuration.| 94| int32_t WriteSensor(struct SensorBusCfg *busCfg, uint8_t *writeData, uint16_t len) | Writes sensor configuration data to the sensor register based on the bus configuration.| 95| int32_t SetSensorRegCfgArray(struct SensorBusCfg *busCfg, const struct SensorRegCfgGroupNode *group); | Sets the sensor register group configuration based on the sensor bus type.| 96| int32_t GetSensorBaseConfigData(const struct DeviceResourceNode *node, struct SensorCfgData *config) | Obtains basic configuration information such as sensor, bus, and attribute configurations based on the device information HCS configuration, and initializes the basic configuration data structure.| 97| int32_t ParseSensorRegConfig(struct SensorCfgData *config) | Parses the register group information based on the device information HCS configuration and initializes the configuration data structure.| 98| void ReleaseSensorAllRegConfig(struct SensorCfgData *config) | Releases the resources allocated to the sensor configuration data structure.| 99| int32_t GetSensorBusHandle(struct SensorBusCfg *busCfg) | Obtains the sensor bus handle information.| 100| int32_t ReleaseSensorBusHandle(struct SensorBusCfg *busCfg) | Releases the sensor bus handle information.| 101 102 103 104The sensor driver model also provides certain driver development APIs that need to be implemented by driver developers. See the table below. 105 106**Table 3** APIs to be implemented by driver developers 107 108| API| Description| 109| ----- | -------- | 110| int32_t init(void) | Initializes the sensor device configuration after a sensor is detected.| 111| int32_t Enable(void) | Enables the current sensor by delivering the register configuration in the enabling operation group based on the device information HCS configuration.| 112| int32_t Disable(void) | Disables the current sensor by delivering the register configuration in the disabling operation group based on the device information HCS configuration.| 113| int32_t SetBatch(int64_t samplingInterval, int64_t reportInterval) | Sets the processing time of the data reporting thread for the current sensor based on the sampling interval and data reporting interval.| 114| int32_t SetMode(int32_t mode) | Sets the data reporting mode of the current sensor device.| 115| int32_t SetOption(uint32_t option) | Sets the register configuration such as the range and accuracy based on sensor options.| 116| void ReadSensorData(void) | Reads sensor data.| 117 118 119### How to Develop 1201. Develop the acceleration sensor abstract driver. Specifically, implement the **Bind**, **Init**, **Release**, and **Dispatch** functions. 121 122 - Implement the entry function for the acceleration sensor. 123 124 ```c 125 /* Register the entry structure object of the acceleration sensor. */ 126 struct HdfDriverEntry g_sensorAccelDevEntry = { 127 .moduleVersion = 1, // Version of the acceleration sensor module. 128 .moduleName = "HDF_SENSOR_ACCEL", // Name of the acceleration sensor module. The value must be the same as that of moduleName in the device_info.hcs file. 129 .Bind = BindAccelDriver, // Function for binding an acceleration sensor. 130 .Init = InitAccelDriver, // Function for initializing an acceleration sensor. 131 .Release = ReleaseAccelDriver // Function for releasing acceleration sensor resources. 132 }; 133 134 /* Call HDF_INIT to register the driver entry with the HDF. When loading the driver, the HDF calls Bind() and then Init() to load the driver. If Init() fails to be called, the HDF calls Release() to release resources and exit. */ 135 HDF_INIT(g_sensorAccelDevEntry); 136 ``` 137 138 - Implement interfaces for acceleration sensor driver operations. 139 140 ```c 141 /* Bind the service provided by the acceleration sensor driver to the HDF. */ 142 int32_t AccelBindDriver(struct HdfDeviceObject *device) 143 { 144 CHECK_NULL_PTR_RETURN_VALUE(device, HDF_ERR_INVALID_PARAM); 145 146 struct AccelDrvData *drvData = (struct AccelDrvData *)OsalMemCalloc(sizeof(*drvData)); 147 if (drvData == NULL) { 148 HDF_LOGE("%s: Malloc accel drv data fail!", __func__); 149 return HDF_ERR_MALLOC_FAIL; 150 } 151 152 drvData->ioService.Dispatch = DispatchAccel; 153 drvData->device = device; 154 device->service = &drvData->ioService; 155 g_accelDrvData = drvData; 156 return HDF_SUCCESS; 157 } 158 159 /* Register the normalization functions of the acceleration sensor driver. */ 160 static int32_t InitAccelOps(struct SensorCfgData *config, struct SensorDeviceInfo *deviceInfo) 161 { 162 CHECK_NULL_PTR_RETURN_VALUE(config, HDF_ERR_INVALID_PARAM); 163 164 deviceInfo->ops.Enable = SetAccelEnable; 165 deviceInfo->ops.Disable = SetAccelDisable; 166 deviceInfo->ops.SetBatch = SetAccelBatch; 167 deviceInfo->ops.SetMode = SetAccelMode; 168 deviceInfo->ops.SetOption = SetAccelOption; 169 170 if (memcpy_s(&deviceInfo->sensorInfo, sizeof(deviceInfo->sensorInfo), 171 &config->sensorInfo, sizeof(config->sensorInfo)) != EOK) { 172 HDF_LOGE("%s: Copy sensor info failed", __func__); 173 return HDF_FAILURE; 174 } 175 176 return HDF_SUCCESS; 177 } 178 /* Provide the initialization interface for the chipset driver to parse the basic acceleration sensor configuration (acceleration information, bus configuration, and sensor detection register configuration), detect sensors, and parse sensor registers. */ 179 static int32_t InitAccelAfterDetected(struct SensorCfgData *config) 180 { 181 struct SensorDeviceInfo deviceInfo; 182 CHECK_NULL_PTR_RETURN_VALUE(config, HDF_ERR_INVALID_PARAM); 183 /* Initialize the acceleration sensor function. */ 184 if (InitAccelOps(config, &deviceInfo) != HDF_SUCCESS) { 185 HDF_LOGE("%s: Init accel ops failed", __func__); 186 return HDF_FAILURE; 187 } 188 /* Register the acceleration sensor with the sensor management module. */ 189 if (AddSensorDevice(&deviceInfo) != HDF_SUCCESS) { 190 HDF_LOGE("%s: Add accel device failed", __func__); 191 return HDF_FAILURE; 192 } 193 /* Parse the sensor register. */ 194 if (ParseSensorRegConfig(config) != HDF_SUCCESS) { 195 HDF_LOGE("%s: Parse sensor register failed", __func__); 196 (void)DeleteSensorDevice(&config->sensorInfo); 197 ReleaseSensorAllRegConfig(config); 198 return HDF_FAILURE; 199 } 200 return HDF_SUCCESS; 201 } 202 struct SensorCfgData *AccelCreateCfgData(const struct DeviceResourceNode *node) 203 { 204 ... 205 /* Continue the next detection if the sensor is not detected. */ 206 if (drvData->detectFlag) { 207 HDF_LOGE("%s: Accel sensor have detected", __func__); 208 return NULL; 209 } 210 if (drvData->accelCfg == NULL) { 211 HDF_LOGE("%s: Accel accelCfg pointer NULL", __func__); 212 return NULL; 213 } 214 /* Parse the basic sensor configuration. */ 215 if (GetSensorBaseConfigData(node, drvData->accelCfg) != HDF_SUCCESS) { 216 HDF_LOGE("%s: Get sensor base config failed", __func__); 217 goto BASE_CONFIG_EXIT; 218 } 219 /* Continue the next detection if the sensor is not detected. */ 220 if (DetectSensorDevice(drvData->accelCfg) != HDF_SUCCESS) { 221 HDF_LOGI("%s: Accel sensor detect device no exist", __func__); 222 drvData->detectFlag = false; 223 goto BASE_CONFIG_EXIT; 224 } 225 drvData->detectFlag = true; 226 /* Parse the sensor register. */ 227 if (InitAccelAfterDetected(drvData->accelCfg) != HDF_SUCCESS) { 228 HDF_LOGE("%s: Accel sensor detect device no exist", __func__); 229 goto INIT_EXIT; 230 } 231 return drvData->accelCfg; 232 ... 233 } 234 /* The entry function of the acceleration sensor driver is used to initialize the sensor private data structure object, allocate space for the sensor HCS data configuration object, call the entry function for initializing the sensor HCS data configuration, detect whether the sensor device is in position, create a timer for sensor data reporting, register the sensor normalization APIs, and register the sensor device. */ 235 int32_t AccelInitDriver(struct HdfDeviceObject *device) 236 { 237 ... 238 /* Initialize work queue resources. */ 239 if (InitAccelData(drvData) != HDF_SUCCESS) { 240 HDF_LOGE("%s: Init accel config failed", __func__); 241 return HDF_FAILURE; 242 } 243 /* Allocate acceleration configuration resources. */ 244 drvData->accelCfg = (struct SensorCfgData *)OsalMemCalloc(sizeof(*drvData->accelCfg)); 245 if (drvData->accelCfg == NULL) { 246 HDF_LOGE("%s: Malloc accel config data failed", __func__); 247 return HDF_FAILURE; 248 } 249 /* Register the register group information. */ 250 drvData->accelCfg->regCfgGroup = &g_regCfgGroup[0]; 251 ... 252 return HDF_SUCCESS; 253 } 254 /* Release the resources allocated during driver initialization. */ 255 void AccelReleaseDriver(struct HdfDeviceObject *device) 256 { 257 CHECK_NULL_PTR_RETURN(device); 258 struct AccelDrvData *drvData = (struct AccelDrvData *)device->service; 259 CHECK_NULL_PTR_RETURN(drvData); 260 /* Release the resources if the sensor is in position. */ 261 if (drvData->detectFlag) { 262 AccelReleaseCfgData(drvData->accelCfg); 263 } 264 OsalMemFree(drvData->accelCfg); 265 drvData->accelCfg = NULL; 266 /* Destroy the work queue resource if the sensor is in position. */ 267 HdfWorkDestroy(&drvData->accelWork); 268 HdfWorkQueueDestroy(&drvData->accelWorkQueue); 269 OsalMemFree(drvData); 270 } 271 ``` 272 2732. Configure the device information about the acceleration sensor driver. 274 275 The acceleration sensor model uses the HCS as the configuration source code. For details about the HCS configuration fields, see [Driver Configuration Management](driver-hdf-manage.md). 276 277 ```hcs 278 /* Device information HCS configuration of the acceleration sensor. */ 279 device_sensor_accel :: device { 280 device0 :: deviceNode { 281 policy = 1; // Policy for the driver to publish services. 282 priority = 100; // Priority (0–200) for starting the driver. A larger value indicates a lower priority. The recommended value is 100. If the priorities are the same, the device loading sequence is not ensured. 283 preload = 0; // The value 0 means to load the driver by default during the startup of the system. The value 2 means the opposite. 284 permission = 0664; // Permission for the device node created. 285 moduleName = "HDF_SENSOR_ACCEL"; // Driver name. It must be the same as moduleName in the driver entry structure. 286 serviceName = "sensor_accel"; // Name of the service published by the driver. The name must be unique. 287 deviceMatchAttr = "hdf_sensor_accel_driver"; // Keyword matching the private data of the driver. The value must be the same as that of match_attr in the private data configuration table of the driver. 288 } 289 } 290 ``` 291 2923. Develop the internal interfaces of the acceleration sensor abstract driver. Specifically, implement the **Enable**, **Disable**, **SetBatch**, **SetMode**, **SetOption**, **AccelCreateCfgData**, **AccelReleaseCfgData**, and **AccelRegisterChipOps** functions. 293 294 ```c 295 /* Leave a function empty if it is not used. */ 296 static int32_t SetAccelInfo(struct SensorBasicInfo *info) 297 { 298 (void)info; 299 300 return HDF_ERR_NOT_SUPPORT; 301 } 302 /* Deliver the configuration of enabling the register groups. */ 303 static int32_t SetAccelEnable(void) 304 { 305 int32_t ret; 306 struct AccelDrvData *drvData = AccelGetDrvData(); 307 308 CHECK_NULL_PTR_RETURN_VALUE(drvData, HDF_ERR_INVALID_PARAM); 309 CHECK_NULL_PTR_RETURN_VALUE(drvData->accelCfg, HDF_ERR_INVALID_PARAM); 310 311 if (drvData->enable) { 312 HDF_LOGE("%s: Accel sensor is enabled", __func__); 313 return HDF_SUCCESS; 314 } 315 316 ret = SetSensorRegCfgArray(&drvData->accelCfg->busCfg, drvData->accelCfg->regCfgGroup[SENSOR_ENABLE_GROUP]); 317 if (ret != HDF_SUCCESS) { 318 HDF_LOGE("%s: Accel sensor enable config failed", __func__); 319 return ret; 320 } 321 322 ret = OsalTimerCreate(&drvData->accelTimer, SENSOR_TIMER_MIN_TIME, AccelTimerEntry, (uintptr_t)drvData); 323 if (ret != HDF_SUCCESS) { 324 HDF_LOGE("%s: Accel create timer failed[%d]", __func__, ret); 325 return ret; 326 } 327 328 ret = OsalTimerStartLoop(&drvData->accelTimer); 329 if (ret != HDF_SUCCESS) { 330 HDF_LOGE("%s: Accel start timer failed[%d]", __func__, ret); 331 return ret; 332 } 333 drvData->enable = true; 334 335 return HDF_SUCCESS; 336 } 337 /* Deliver the configuration of disabling the register groups. */ 338 static int32_t SetAccelDisable(void) 339 { 340 int32_t ret; 341 struct AccelDrvData *drvData = AccelGetDrvData(); 342 343 CHECK_NULL_PTR_RETURN_VALUE(drvData, HDF_ERR_INVALID_PARAM); 344 CHECK_NULL_PTR_RETURN_VALUE(drvData->accelCfg, HDF_ERR_INVALID_PARAM); 345 346 if (!drvData->enable) { 347 HDF_LOGE("%s: Accel sensor had disable", __func__); 348 return HDF_SUCCESS; 349 } 350 351 ret = SetSensorRegCfgArray(&drvData->accelCfg->busCfg, drvData->accelCfg->regCfgGroup[SENSOR_DISABLE_GROUP]); 352 if (ret != HDF_SUCCESS) { 353 HDF_LOGE("%s: Accel sensor disable config failed", __func__); 354 return ret; 355 } 356 357 ret = OsalTimerDelete(&drvData->accelTimer); 358 if (ret != HDF_SUCCESS) { 359 HDF_LOGE("%s: Accel delete timer failed", __func__); 360 return ret; 361 } 362 drvData->enable = false; 363 364 return HDF_SUCCESS; 365 } 366 /* Set the sampling interval and data reporting interval of the sensor. */ 367 static int32_t SetAccelBatch(int64_t samplingInterval, int64_t interval) 368 { 369 (void)interval; 370 371 struct AccelDrvData *drvData = NULL; 372 373 drvData = AccelGetDrvData(); 374 CHECK_NULL_PTR_RETURN_VALUE(drvData, HDF_ERR_INVALID_PARAM); 375 376 drvData->interval = samplingInterval; 377 378 return HDF_SUCCESS; 379 } 380 /* Set the data reporting mode of the sensor. Currently, the real-time mode is supported. */ 381 static int32_t SetAccelMode(int32_t mode) 382 { 383 return (mode == SENSOR_WORK_MODE_REALTIME) ? HDF_SUCCESS : HDF_FAILURE; 384 } 385 386 static int32_t SetAccelOption(uint32_t option) 387 { 388 (void)option; 389 return HDF_SUCCESS; 390 } 391 /* Set the sensor options. */ 392 static int32_t SetAccelOption(uint32_t option) 393 { 394 (void)option; 395 return HDF_ERR_NOT_SUPPORT; 396 } 397 ``` 398 3994. Develop the acceleration sensor chipset driver. Specifically, implement the **Bind**, **Init**, **Release**, and **Dispatch** functions. 400 401 ```c 402 /* Message interaction of the acceleration sensor chipset driver */ 403 static int32_t DispatchBMI160(struct HdfDeviceIoClient *client, 404 int cmd, struct HdfSBuf *data, struct HdfSBuf *reply) 405 { 406 (void)client; 407 (void)cmd; 408 (void)data; 409 (void)reply; 410 411 return HDF_SUCCESS; 412 } 413 /* Bind the service provided by the acceleration sensor chipset driver to the HDF. */ 414 int32_t Bmi160BindDriver(struct HdfDeviceObject *device) 415 { 416 CHECK_NULL_PTR_RETURN_VALUE(device, HDF_ERR_INVALID_PARAM); 417 418 struct Bmi160DrvData *drvData = (struct Bmi160DrvData *)OsalMemCalloc(sizeof(*drvData)); 419 if (drvData == NULL) { 420 HDF_LOGE("%s: Malloc Bmi160 drv data fail", __func__); 421 return HDF_ERR_MALLOC_FAIL; 422 } 423 424 drvData->ioService.Dispatch = DispatchBMI160; 425 drvData->device = device; 426 device->service = &drvData->ioService; 427 g_bmi160DrvData = drvData; 428 429 return HDF_SUCCESS; 430 } 431 /* Initialize the acceleration sensor chipset driver. */ 432 int32_t Bmi160InitDriver(struct HdfDeviceObject *device) 433 { 434 int32_t ret; 435 struct AccelOpsCall ops; 436 437 CHECK_NULL_PTR_RETURN_VALUE(device, HDF_ERR_INVALID_PARAM); 438 struct Bmi160DrvData *drvData = (struct Bmi160DrvData *)device->service; 439 CHECK_NULL_PTR_RETURN_VALUE(drvData, HDF_ERR_INVALID_PARAM); 440 441 ret = InitAccelPreConfig(); 442 if (ret != HDF_SUCCESS) { 443 HDF_LOGE("%s: Init BMI160 bus mux config", __func__); 444 return HDF_FAILURE; 445 } 446 447 drvData->sensorCfg = AccelCreateCfgData(device->property); 448 if (drvData->sensorCfg == NULL || drvData->sensorCfg->root == NULL) { 449 HDF_LOGD("%s: Creating accelcfg failed because detection failed", __func__); 450 return HDF_ERR_NOT_SUPPORT; 451 } 452 453 ops.Init = NULL; 454 ops.ReadData = ReadBmi160Data; 455 ret = AccelRegisterChipOps(&ops); 456 if (ret != HDF_SUCCESS) { 457 HDF_LOGE("%s: Register BMI160 accel failed", __func__); 458 return HDF_FAILURE; 459 } 460 461 ret = InitBmi160(drvData->sensorCfg); 462 if (ret != HDF_SUCCESS) { 463 HDF_LOGE("%s: Init BMI160 accel failed", __func__); 464 return HDF_FAILURE; 465 } 466 467 return HDF_SUCCESS; 468 } 469 /* Release the resources allocated during driver initialization. */ 470 void Bmi160ReleaseDriver(struct HdfDeviceObject *device) 471 { 472 ... 473 if (drvData->sensorCfg != NULL) { 474 AccelReleaseCfgData(drvData->sensorCfg); 475 drvData->sensorCfg = NULL; 476 } 477 OsalMemFree(drvData); 478 } 479 /*HdfDriverEntry object corresponding to the acceleration sensor chipset driver */ 480 struct HdfDriverEntry g_accelBmi160DevEntry = { 481 .moduleVersion = 1, 482 .moduleName = "HDF_SENSOR_ACCEL_BMI160", 483 .Bind = Bmi160BindDriver, 484 .Init = Bmi160InitDriver, 485 .Release = Bmi160ReleaseDriver, 486 }; 487 HDF_INIT(g_accelBmi160DevEntry); 488 ``` 489 4905. Implement the **ReadData** function of the acceleration sensor chipset driver. 491 492 ```c 493 int32_t ReadBmi160Data(struct SensorCfgData *data) 494 { 495 int32_t ret; 496 struct AccelData rawData = { 0, 0, 0 }; 497 int32_t tmp[ACCEL_AXIS_NUM]; 498 struct SensorReportEvent event; 499 (void)memset_s(&event, sizeof(event), 0, sizeof(event)); 500 ret = ReadBmi160RawData(data, &rawData, &event.timestamp); 501 if (ret != HDF_SUCCESS) { 502 HDF_LOGE("%s: BMI160 read raw data failed", __func__); 503 return HDF_FAILURE; 504 } 505 event.sensorId = SENSOR_TAG_ACCELEROMETER; 506 event.option = 0; 507 event.mode = SENSOR_WORK_MODE_REALTIME; 508 ... 509 ret = ReportSensorEvent(&event); 510 if (ret != HDF_SUCCESS) { 511 HDF_LOGE("%s: BMI160 report data failed", __func__); 512 } 513 return ret; 514 } 515 ``` 516 517### Verification 518 519After the driver is developed, develop test cases in the sensor unit test to verify the basic functions of the driver. Use your test platform to set up the test environment. 520 521```c++ 522static int32_t g_sensorDataFlag = 0; // Whether to report sensor data. 523static const struct SensorInterface *g_sensorDev = nullptr; // Retain the obtained sensor interface instance address. 524 525/* Register the data reporting function. */ 526static int SensorTestDataCallback(struct SensorEvents *event) 527{ 528 if (event == nullptr) { 529 return -1; 530 } 531 float *data = (float*)event->data; 532 printf("time [%lld] sensor id [%d] x-[%f] y-[%f] z-[%f]\n\r", event->timestamp, 533 event->sensorId, (*data), *(data + 1), *(data + g_axisZ)); 534 if (*data > 1e-5) { 535 g_sensorDataFlag = 1; 536 } 537 return 0; 538} 539/* Initialize the sensor interface instance before executing the test cases. */ 540void HdfSensorTest::SetUpTestCase() 541{ 542 g_sensorDev = NewSensorInterfaceInstance(); 543 if (g_sensorDev == nullptr) { 544 printf("test sensor get module instance failed\n\r"); 545 } 546} 547/* Release case resources. */ 548void HdfSensorTest::TearDownTestCase() 549{ 550 if (g_sensorDev != nullptr) { 551 FreeSensorInterfaceInstance(); 552 g_sensorDev = nullptr; 553 } 554} 555/* Verify the sensor driver. */ 556HWTEST_F(HdfSensorTest,TestAccelDriver_001, TestSize.Level0) 557{ 558 int32_t sensorInterval = 1000000000; // Data sampling interval, in nanoseconds. 559 int32_t pollTime = 5; // Data sampling time, in seconds. 560 int32_t accelSensorId = 1; // Acceleration sensor ID, which specifies the sensor type. 561 int32_t count = 0; 562 int ret; 563 struct SensorInformation *sensorInfo = nullptr; 564 565 ret = g_sensorDev->Register(0, TraditionSensorTestDataCallback) 566 EXPECT_EQ(SENSOR_NULL_PTR, ret); 567 568 ret = g_sensorDev->GetAllSensors(&sensorInfo, &count); 569 EXPECT_EQ(0, ret); 570 if (sensorInfo == nullptr) { 571 EXPECT_NE(nullptr, sensorInfo); 572 return; 573 } 574 /* Print the obtained sensor list. */ 575 for (int i = 0; i < count; i++) { 576 printf("get sensorId[%d], info name[%s]\n\r", sensorInfo[i]->sensorId, sensorInfo[i]->sensorName); 577 } 578 ret = g_sensorDev->Enable(accelSensorId); 579 EXPECT_EQ(0, ret); 580 g_sensorDataFlag = 0; 581 582 ret = g_sensorDev->SetBatch(accelSensorId, sensorInterval, pollTime); 583 EXPECT_EQ(0, ret); 584 /* Observe the printed data within the period specified by pollTime. */ 585 OsalSleep(pollTime); 586 EXPECT_EQ(1, g_sensorDataFlag); 587 588 ret = g_sensorDev->Disable(accelSensorId); 589 g_sensorDataFlag = 0; 590 EXPECT_EQ(0, ret); 591 592 ret = g_sensorDev->Unregister(0, TraditionSensorTestDataCallback); 593 EXPECT_EQ(0, ret); 594} 595``` 596