• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1# Touchscreen
2
3
4## Overview
5
6### Function Introduction
7
8The touchscreen driver powers on its integrated circuit (IC), initializes hardware pins, registers interrupts, configures the communication (I2C or SPI) interface, sets input configurations, and downloads and updates firmware.
9
10The touchscreen driver is developed based on the OpenHarmony input driver model, which applies basic APIs of the operating system abstraction layer (OSAL) and platform interface layer on the OpenHarmony Hardware Driver Foundation [(HDF)](../driver/driver-hdf-development.md). Common APIs include the bus communication APIs and OS native APIs (such as memory, lock, thread, and timer APIs). The OSAL and platform APIs shield the differences of underlying hardware. This allows the use of the touchscreen driver across platforms and OSs. In this regard, you can develop the touchscreen driver only once and deploy it on multiple devices.
11
12### Working Principles
13
14The input driver model is developed based on the HDF and APIs of the platform and OSAL. It provides hardware driver capabilities through the input Hardware Driver Interface (HDI) for upper-layer input services to control the touchscreen. The following figure shows the architecture of the input driver model.
15
16**Figure 1** Input driver model
17
18![image](figures/architecture-of-the-input-driver-model.png)
19
20The input driver model consists of the following:
21
22- Input Device Manager: provides APIs for input device drivers to register and deregister input devices and manages the input device list in a unified manner.
23- Common input drivers: provide common APIs that are applicable to different input devices (such as the common driver APIs for touchscreens). The APIs can be used to initialize board-specific hardware, handle hardware interrupts, and register input devices with the Input Device Manager.
24- Input chip drivers: provide differentiated APIs for the drivers form different vendors. You can use these APIs to develop your drivers with minimum modification.
25- Event Hub: provides a unified channel for different input devices to report input events.
26- HDF input config: parses and manages the board-specific and private configuration of input devices.
27
28The input driver model provides configuration files to help you quickly develop your drivers.
29
30
31## How to Develop
32
33### When to Use
34
35The input module provides APIs for powering on the touchscreen driver IC, configuring and initializing hardware pins, registering interrupts, configuring the communication (I2C or SPI) interface, setting input configurations, and downloading and updating firmware.
36
37### Available APIs
38
39#### Hardware Interfaces
40
41The hardware interfaces for touchscreens can be classified into the following types based on the pin attributes:
42
43- Power interfaces
44
45- I/O control interfaces
46
47- Communication interfaces
48
49**Figure 2** Common touchscreen pins
50
51![](figures/common-pins-of-the-touchscreen.png "common-pins-of-the-touchscreen")
52
53The interfaces shown in the preceding figure are described as follows:
54
551. **Power interfaces**
56
57   - **LDO_1P8**: 1.8 V digital circuit
58   - **LDO_3P3**: 3.3 V analog circuit
59
60     If the touchscreen driver and ICD driver have its own IC, the touchscreen driver IC requires 1.8 V and 3.3 V power supplies. If the touchscreen driver and LCD driver have an integrated IC, you only need to care about the 1.8 V power supply for the touchscreen. The 3.3 V power supply required can be provided by the LCD VSP power (typically 5.5 V) in the driver IC.
61
622. **I/O control interfaces**
63
64   - **RESET**: pin used to reset the driver IC on the host when the kernel is put into hibernation or waken up.
65   - **INT**: interrupt pin, which must be set to the input pull-up state during driver initialization. After detecting an external touch signal, the driver triggers an interrupt by operating the interrupt pin. Then, the driver reads the touch reporting data in an interrupt handler.
66
673. **Communication interfaces**
68
69   - I2C: I2C is used if a small amount of data is reported by the touchscreen. For details about the I2C protocol and related operation APIs, see [I2C](../driver/driver-platform-i2c-des.md).
70   - SPI: SPI is used if a large amount of data is reported by the touchscreen. For details about the SPI protocol and related operation APIs, see [SPI](../driver/driver-platform-spi-des.md).
71
72#### Software Interfaces
73
74The HDI driver APIs provided for the input service can be classified into the input manager module, input reporter module, and input controller module. The following tables describe the available APIs.
75
76- input_manager.h
77
78  | API                                                                              | Description          |
79  | ------------------------------------------------------------------------------------- | -------------------|
80  | int32_t (*OpenInputDevice)(uint32_t devIndex);                                        | Opens an input device.      |
81  | int32_t (*CloseInputDevice)(uint32_t devIndex);                                       | Closes an input device.      |
82  | int32_t (*GetInputDevice)(uint32_t devIndex, DeviceInfo **devInfo);                   | Obtains information about an input device.|
83  | int32_t (*GetInputDeviceList)(uint32_t *devNum, DeviceInfo **devList, uint32_t size); | Obtains the input device list.|
84
85- input_reporter.h
86
87  | API                                                                            | Description           |
88  | ----------------------------------------------------------------------------------- | ------------------ |
89  | int32_t (*RegisterReportCallback)(uint32_t devIndex, InputReportEventCb *callback); | Registers a callback for an input device.|
90  | int32_t (*UnregisterReportCallback)(uint32_t devIndex);                             | Unregisters the callback for an input device.|
91  | void (*ReportEventPkgCallback)(const EventPackage **pkgs, uint32_t count);          | Called to report input event data.  |
92
93- input_controller.h
94
95  | API                                                                                            | Description      |
96  | --------------------------------------------------------------------------------------------------- |--------------- |
97  | int32_t (*SetPowerStatus)(uint32_t devIndex, uint32_t status);                                      | Sets the power status.   |
98  | int32_t (*GetPowerStatus)(uint32_t devIndex, uint32_t *status);                                     | Obtains the power status.   |
99  | int32_t (*GetDeviceType)(uint32_t devIndex, uint32_t *deviceType);                                  | Obtains the device type.   |
100  | int32_t (*GetChipInfo)(uint32_t devIndex, char *chipInfo, uint32_t length);                         | Obtains the chip information of a device.|
101  | int32_t (*GetVendorName)(uint32_t devIndex, char *vendorName, uint32_t length);                     | Obtains the module vendor name of a device.  |
102  | int32_t (*GetChipName)(uint32_t devIndex, char *chipName, uint32_t length);                         | Obtains the driver chip name of a device.  |
103  | int32_t (*SetGestureMode)(uint32_t devIndex, uint32_t gestureMode);                                 | Sets the gesture mode.    |
104  | int32_t (*RunCapacitanceTest)(uint32_t devIndex, uint32_t testType, char *result, uint32_t length); | Performs a capacitance test.|
105  | int32_t (*RunExtraCommand)(uint32_t devIndex, InputExtraCmd *cmd);                                  | Executes the specified command.    |
106
107For more information, see [input](https://gitee.com/openharmony/drivers_peripheral/tree/master/input).
108
109### Development Procedure
110
111The load process of the input driver model (for the touchscreen driver) is as follows:
112
1131. The device configuration, including the driver loading priority, board-specific hardware information, and private data, is complete.
114
1152. The HDF driver loads the input device manager driver to create and initialize the device manager.
116
1173. The HDF loads the platform driver to parse the board-specific configuration, initialize the hardware, and provide the API for registering the touchscreen.
118
1194. The HDF loads the touchscreen driver to instantiate the touchscreen device, parse the private data, and implement the differentiated APIs for the platform.
120
1215. The instantiated touchscreen device registers with the platform driver to bind the device and the driver and complete the device initialization, including interrupt registration and device power-on and power-off.
122
1236. The instantiated input device registers with the input device manager for unified management.
124
125
126The development process of the touchscreen driver is as follows:
127
1281. Configure device information. <br>The input driver is developed based on the HDF. The HDF loads and starts the driver in a unified manner. You need to configure the driver information, such as whether to load the driver and the loading priority, in the configuration file. Then, the HDF starts the registered driver modules one by one. For details about how to configure the driver, see [Driver Development](../driver/driver-hdf-development.md#how-to-develop).
129
1302. Configure board-specific information and touchscreen private information.<br>Configure the I/O pin functions. For example, set registers for the I2C pins on the board for the touchscreen to enable I2C communication.
131
1323. Implement device-specific APIs.<br>Based on the communication interfaces designed for the board, use the pin operation APIs provided by the platform interface layer to configure the corresponding reset pin, interrupt pin, and power operations. For details about GPIO operations, see [GPIO](../driver/driver-platform-gpio-des.md).
133
134
135### Development Example
136
137The following example describes how to develop the touchscreen driver for an RK3568 development board.
138
1391. Configure device information.
140
141   Configure the modules of the input driver model in **drivers/adapter/khdf/linux/hcs/device_info/device_info.hcs**. For details, see [Driver Development](../driver/driver-hdf-development.md). Then, the HDF loads the modules of the input model in sequence based on the configuration information.
142
143   ```c
144   input :: host {
145       hostName = "input_host";
146       priority = 100;
147       device_input_manager :: device {
148           device0 :: deviceNode {
149               policy = 2;        // The driver provides services externally.
150               priority = 100;    // Loading priority. In the input model, the manager module has the highest priority.
151               preload = 0;       // Whether to load the driver. The value 0 means to load the driver; 1 means the opposite.
152               permission = 0660;
153               moduleName = "HDF_INPUT_MANAGER";
154               serviceName = "input_dev_manager";
155               deviceMatchAttr = "";
156           }
157       }
158       device_hdf_touch :: device {
159           device0 :: deviceNode {
160               policy = 2;
161               priority = 120;
162               preload = 0;
163               permission = 0660;
164               moduleName = "HDF_TOUCH";
165               serviceName = "event1";
166               deviceMatchAttr = "touch_device1";
167           }
168       }
169
170       device_touch_chip :: device {
171           device0 :: deviceNode {
172               policy = 0;
173               priority = 130;
174               preload = 0;
175               permission = 0660;
176               moduleName = "HDF_TOUCH_SAMPLE";
177               serviceName = "hdf_touch_sample_service";
178               deviceMatchAttr = "zsj_sample_5p5";
179           }
180       }
181   }
182   ```
183
1842. Configure board-specific and private data for the touchscreen.
185
186   Configure the data in **drivers/adapter/khdf/linux/hcs/input/input_config.hcs**. The following is an example. You can modify the configuration as required.
187
188   ```c
189   root {
190       input_config {
191           touchConfig {
192               touch0 {
193                   boardConfig {
194                       match_attr = "touch_device1";
195                       inputAttr {
196                           inputType = 0;           // 0 indicates touchscreen.
197                           solutionX = 480;
198                           solutionY = 960;
199                           devName = "main_touch"; // Device name.
200                       }
201                       busConfig {
202                           busType = 0;             // 0 indicates I2C.
203                           busNum = 6;
204                           clkGpio = 86;
205                           dataGpio = 87;
206                           i2cClkIomux = [0x114f0048, 0x403];  // Register of the I2C_CLK pin.
207                           i2cDataIomux = [0x114f004c, 0x403]; // Register of the I2C_DATA pin.
208                       }
209                       pinConfig {
210                           rstGpio = 3;
211                           intGpio = 4;
212                           rstRegCfg = [0x112f0094, 0x400];  // Register of the reset pin.
213                           intRegCfg = [0x112f0098, 0x400];  // Register of the interrupt pin.
214                       }
215                       powerConfig {
216                           vccType = 2;       // The value 1 stands for LDO, 2 for GPIO, and 3 for PMIC.
217                           vccNum = 20;       // Set the GPIO number to 20.
218                           vccValue = 1800;   // Set the voltage amplitude to 1800 mV.
219                           vciType = 1;
220                           vciNum = 12;
221                           vciValue = 3300;
222                       }
223                       featureConfig {
224                           capacitanceTest = 0;
225                           gestureMode = 0;
226                           gloverMOde = 0;
227                           coverMode = 0;
228                           chargerMode = 0;
229                           knuckleMode = 0;
230                       }
231                   }
232                   chipConfig {
233                       template touchChip {
234                           match_attr = "";
235                           chipName = "sample";
236                           vendorName = "zsj";
237                           chipInfo = "AAAA11222";  // The first four characters indicate the product name. The fifth and sixth characters indicate the IC model. The last three characters indicate the model number.
238                           busType = 0;
239                           deviceAddr = 0x5D;
240                           irqFlag = 2;             // The value 1 means to trigger an interrupt on the rising edge, 2 means to trigger an interrupt on the falling edge, 4 means to trigger an interrupt by the high level, and 8 means to trigger an interrupt by the low level.
241                           maxSpeed = 400;
242                           chipVersion = 0;
243                           powerSequence {
244                               /* Description of the power-on sequence:
245                                 [type, status, direction, delay]
246                                 <type> 0 stands for null; 1 for VCC power (1.8 V); 2 for VCI power (3.3 V); 3 for reset pin; 4 for interrupt pin.
247                                 <status> 0 stands for power-off or pull-down; 1 for power-on or pull-up; 2 for no operation.
248                                 <dir> 0 stands for input; 1 for output; 2 for no operation.
249                                 <delay> indicates the delay, in milliseconds. For example, 20 indicates 20 ms delay.
250                               */
251                               powerOnSeq = [4, 0, 1, 0,
252                                           3, 0, 1, 10,
253                                           3, 1, 2, 60,
254                                           4, 2, 0, 0];
255                               suspendSeq = [3, 0, 2, 10];
256                               resumeSeq = [3, 1, 2, 10];
257                               powerOffSeq = [3, 0, 2, 10,
258                                             1, 0, 2, 20];
259                           }
260                       }
261                       chip0 :: touchChip {
262                           match_attr = "zsj_sample_5p5";
263                           chipInfo = "ZIDN45100";
264                           chipVersion = 0;
265                       }
266                   }
267               }
268           }
269       }
270   }
271   ```
272
2733. Add the touchscreen driver.
274
275   Implement the touchscreen-specific APIs in **divers/framework/model/input/driver/touchscreen/touch_gt911.c**. The following uses the APIs for obtaining and parsing device data as an example. You can implement the related APIs to match your development.
276
277   ```c
278   /* Parse the touch reporting data read from the touchscreen into coordinates. */
279   static void ParsePointData(ChipDevice *device, FrameData *frame, uint8_t *buf, uint8_t pointNum)
280   {
281       int32_t resX = device->driver->boardCfg->attr.resolutionX;
282       int32_t resY = device->driver->boardCfg->attr.resolutionY;
283
284       for (int32_t i = 0; i < pointNum; i++) {
285           frame->fingers[i].y = (buf[GT_POINT_SIZE * i + GT_X_LOW] & ONE_BYTE_MASK) |
286                                 ((buf[GT_POINT_SIZE * i + GT_X_HIGH] & ONE_BYTE_MASK) << ONE_BYTE_OFFSET);
287           frame->fingers[i].x = (buf[GT_POINT_SIZE * i + GT_Y_LOW] & ONE_BYTE_MASK) |
288                                 ((buf[GT_POINT_SIZE * i + GT_Y_HIGH] & ONE_BYTE_MASK) << ONE_BYTE_OFFSET);
289           frame->fingers[i].valid = true;
290       }
291   }
292   /* Obtain the touch reporting data from the device. */
293   static int32_t ChipDataHandle(ChipDevice *device)
294   {
295       int32_t ret;
296       uint8_t touchStatus = 0;
297       uint8_t pointNum;
298       uint8_t buf[GT_POINT_SIZE * MAX_SUPPORT_POINT] = {0};
299       InputI2cClient *i2cClient = &device->driver->i2cClient;
300       uint8_t reg[GT_ADDR_LEN] = {0};
301       FrameData *frame = &device->driver->frameData;
302       reg[0] = (GT_BUF_STATE_ADDR >> ONE_BYTE_OFFSET) & ONE_BYTE_MASK;
303       reg[1] = GT_BUF_STATE_ADDR & ONE_BYTE_MASK;
304       ret = InputI2cRead(i2cClient, reg, GT_ADDR_LEN, &touchStatus, 1);
305       if (ret < 0 || touchStatus == GT_EVENT_INVALID) {
306           return HDF_FAILURE;
307       }
308       OsalMutexLock(&device->driver->mutex);
309       (void)memset_s(frame, sizeof(FrameData), 0, sizeof(FrameData));
310       if (touchStatus == GT_EVENT_UP) {
311           frame->realPointNum = 0;
312           frame->definedEvent = TOUCH_UP;
313           goto exit;
314       }
315       reg[0] = (GT_X_LOW_BYTE_BASE >> ONE_BYTE_OFFSET) & ONE_BYTE_MASK;
316       reg[1] = GT_X_LOW_BYTE_BASE & ONE_BYTE_MASK;
317       pointNum = touchStatus & GT_FINGER_NUM_MASK;
318       if (pointNum <= 0 || pointNum > MAX_SUPPORT_POINT) {
319           HDF_LOGE("%s: pointNum is invalid, %d", __func__, pointNum);
320           (void)ChipCleanBuffer(i2cClient);
321           OsalMutexUnlock(&device->driver->mutex);
322           return HDF_FAILURE;
323       }
324       frame->realPointNum = pointNum;
325       frame->definedEvent = TOUCH_DOWN;
326       /* Read the touch reporting data from the register. */
327       (void)InputI2cRead(i2cClient, reg, GT_ADDR_LEN, buf, GT_POINT_SIZE * pointNum);
328       /* Parse the touch reporting data. */
329       ParsePointData(device, frame, buf, pointNum);
330   exit:
331       OsalMutexUnlock(&device->driver->mutex);
332       if (ChipCleanBuffer(i2cClient) != HDF_SUCCESS) {
333           return HDF_FAILURE;
334       }
335       return HDF_SUCCESS;
336   }
337
338   static struct TouchChipOps g_sampleChipOps = {
339       .Init = ChipInit,
340       .Detect = ChipDetect,
341       .Resume = ChipResume,
342       .Suspend = ChipSuspend,
343       .DataHandle = ChipDataHandle,
344   };
345
346   static TouchChipCfg *ChipConfigInstance(struct HdfDeviceObject *device)
347   {
348       TouchChipCfg *chipCfg = (TouchChipCfg *)OsalMemAlloc(sizeof(TouchChipCfg));
349       if (chipCfg == NULL) {
350           HDF_LOGE("%s: instance chip config failed", __func__);
351           return NULL;
352       }
353       (void)memset_s(chipCfg, sizeof(TouchChipCfg), 0, sizeof(TouchChipCfg));
354       /* Parse the touchscreen private configuration. */
355       if (ParseTouchChipConfig(device->property, chipCfg) != HDF_SUCCESS) {
356           HDF_LOGE("%s: parse chip config failed", __func__);
357           OsalMemFree(chipCfg);
358           chipCfg = NULL;
359       }
360       return chipCfg;
361   }
362
363   static ChipDevice *ChipDeviceInstance(void)
364   {
365       ChipDevice *chipDev = (ChipDevice *)OsalMemAlloc(sizeof(ChipDevice));
366       if (chipDev == NULL) {
367           HDF_LOGE("%s: instance chip device failed", __func__);
368           return NULL;
369       }
370       (void)memset_s(chipDev, sizeof(ChipDevice), 0, sizeof(ChipDevice));
371       return chipDev;
372   }
373
374   static void FreeChipConfig(TouchChipCfg *config)
375   {
376       if (config->pwrSeq.pwrOn.buf != NULL) {
377           OsalMemFree(config->pwrSeq.pwrOn.buf);
378       }
379       if (config->pwrSeq.pwrOff.buf != NULL) {
380           OsalMemFree(config->pwrSeq.pwrOff.buf);
381       }
382       OsalMemFree(config);
383   }
384
385   static int32_t HdfSampleChipInit(struct HdfDeviceObject *device)
386   {
387       TouchChipCfg *chipCfg = NULL;
388       ChipDevice *chipDev = NULL;
389       HDF_LOGE("%s: enter", __func__);
390       if (device == NULL) {
391           return HDF_ERR_INVALID_PARAM;
392       }
393       /* Parse the touchscreen private configuration. */
394       chipCfg = ChipConfigInstance(device);
395       if (chipCfg == NULL) {
396           return HDF_ERR_MALLOC_FAIL;
397       }
398       /* Instantiate the touchscreen device. */
399       chipDev = ChipDeviceInstance();
400       if (chipDev == NULL) {
401           goto freeCfg;
402       }
403       chipDev->chipCfg = chipCfg;
404       chipDev->ops = &g_sampleChipOps;
405       chipDev->chipName = chipCfg->chipName;
406       chipDev->vendorName = chipCfg->vendorName;
407
408     /* Register the touchscreen device with the platform driver. */
409       if (RegisterChipDevice(chipDev) != HDF_SUCCESS) {
410           goto freeDev;
411       }
412       HDF_LOGI("%s: exit succ, chipName = %s", __func__, chipCfg->chipName);
413       return HDF_SUCCESS;
414
415   freeDev:
416       OsalMemFree(chipDev);
417   freeCfg:
418       FreeChipConfig(chipCfg);
419       return HDF_FAILURE;
420   }
421
422   struct HdfDriverEntry g_touchSampleChipEntry = {
423       .moduleVersion = 1,
424       .moduleName = "HDF_TOUCH_SAMPLE",
425       .Init = HdfSampleChipInit,
426   };
427
428   HDF_INIT(g_touchSampleChipEntry);
429   ```
430
4314. Call the Input HDI APIs.
432
433   The following sample code shows how an upper-layer input system service calls Input HDI APIs.
434
435   ```c
436   #include "input_manager.h"
437   #define DEV_INDEX 1
438
439   IInputInterface *g_inputInterface;
440   InputReportEventCb g_callback;
441
442   /* Define the callback for data reporting. */
443   static void ReportEventPkgCallback(const EventPackage **pkgs, uint32_t count)
444   {
445       if (pkgs == NULL || count > MAX_PKG_NUM) {
446           return;
447       }
448       for (uint32_t i = 0; i < count; i++) {
449           HDF_LOGI("%s: pkgs[%d] = 0x%x, 0x%x, %d", __func__, i, pkgs[i]->type, pkgs[i]->code, pkgs[i]->value);
450       }
451   }
452
453   int InputServiceSample(void)
454   {
455       uint32_t devType = INIT_DEFAULT_VALUE;
456
457       /* Obtain the input driver APIs. */
458       int ret = GetInputInterface(&g_inputInterface);
459       if (ret != INPUT_SUCCESS) {
460           HDF_LOGE("%s: get input interfaces failed, ret = %d", __func__, ret);
461           return ret;
462       }
463
464       INPUT_CHECK_NULL_POINTER(g_inputInterface, INPUT_NULL_PTR);
465       INPUT_CHECK_NULL_POINTER(g_inputInterface->iInputManager, INPUT_NULL_PTR);
466       /* Open an input device. */
467       ret = g_inputInterface->iInputManager->OpenInputDevice(DEV_INDEX);
468       if (ret) {
469           HDF_LOGE("%s: open input device failed, ret = %d", __func__, ret);
470         return ret;
471       }
472
473       INPUT_CHECK_NULL_POINTER(g_inputInterface->iInputController, INPUT_NULL_PTR);
474       /* Obtain the type of the input device. */
475       ret = g_inputInterface->iInputController->GetDeviceType(DEV_INDEX, &devType);
476       if (ret) {
477           HDF_LOGE("%s: get device type failed, ret: %d", __FUNCTION__, ret);
478           return ret;
479       }
480       HDF_LOGI("%s: device1's type is %u\n", __FUNCTION__, devType);
481
482       /* Register the data reporting callback for the input device. */
483       g_callback.ReportEventPkgCallback = ReportEventPkgCallback;
484       INPUT_CHECK_NULL_POINTER(g_inputInterface->iInputReporter, INPUT_NULL_PTR);
485       ret  = g_inputInterface->iInputReporter->RegisterReportCallback(DEV_INDEX, &g_callback);
486       if (ret) {
487           HDF_LOGE("%s: register callback failed, ret: %d", __FUNCTION__, ret);
488         return ret;
489       }
490       HDF_LOGI("%s: wait 10s for testing, pls touch the panel now", __FUNCTION__);
491       OsalMSleep(KEEP_ALIVE_TIME_MS);
492
493       /* Unregister the callback for the input device. */
494       ret = g_inputInterface->iInputReporter->UnregisterReportCallback(DEV_INDEX);
495       if (ret) {
496           HDF_LOGE("%s: unregister callback failed, ret: %d", __FUNCTION__, ret);
497           return ret;
498       }
499
500       /* Close the input device. */
501       ret = g_inputInterface->iInputManager->CloseInputDevice(DEV_INDEX);
502       if (ret) {
503           HDF_LOGE("%s: close device failed, ret: %d", __FUNCTION__, ret);
504         return ret;
505       }
506       return 0;
507   }
508   ```
509