• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1# Copyright 2021 Huawei Technologies Co., Ltd
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7# http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ============================================================================
15import numpy as np
16import pytest
17import mindspore.context as context
18import mindspore.nn as nn
19from mindspore import Tensor
20import mindspore.common.dtype as mstype
21from mindspore.ops import operations as P
22
23context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
24
25class Net(nn.Cell):
26    def __init__(self, axis=0):
27        super(Net, self).__init__()
28        self.unique = P.Unique()
29        self.reshape = P.Reshape()
30        self.concat = P.Concat(axis=axis)
31
32    def construct(self, x1, x2):
33        out1_unique, _ = self.unique(x1)
34        out2_unique, _ = self.unique(x2)
35        out1_shape = self.reshape(out1_unique, (1, -1, 2))
36        out2_shape = self.reshape(out2_unique, (1, -1, 2))
37        return self.concat((out1_shape, out2_shape))
38
39@pytest.mark.level0
40@pytest.mark.platform_arm_ascend_training
41@pytest.mark.platform_x86_ascend_training
42@pytest.mark.env_onecard
43def test_dynamic_concat():
44    x1 = Tensor(np.array([1, 2, 3, 1, 4, 2]), mstype.int32)
45    x2 = Tensor(np.array([1, 2, 3, 4, 5, 6]), mstype.int32)
46    net = Net(axis=1)
47    output = net(x1, x2)
48    expect = np.array([[[1, 2], [3, 4], [1, 2], [3, 4], [5, 6]]])
49    assert (output.asnumpy() == expect).all()
50