1# Copyright 2020 Huawei Technologies Co., Ltd 2# 3# Licensed under the Apache License, Version 2.0 (the "License"); 4# you may not use this file except in compliance with the License. 5# You may obtain a copy of the License at 6# 7# http://www.apache.org/licenses/LICENSE-2.0 8# 9# Unless required by applicable law or agreed to in writing, software 10# distributed under the License is distributed on an "AS IS" BASIS, 11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12# See the License for the specific language governing permissions and 13# limitations under the License. 14# ============================================================================ 15import numpy as np 16import pytest 17import mindspore.context as context 18import mindspore.nn as nn 19from mindspore import Tensor 20import mindspore.common.dtype as mstype 21from mindspore.ops import operations as P 22 23context.set_context(mode=context.GRAPH_MODE, device_target="CPU") 24 25 26class Net(nn.Cell): 27 def __init__(self): 28 super(Net, self).__init__() 29 self.unique = P.Unique() 30 31 def construct(self, x): 32 return self.unique(x) 33 34 35class UniqueSquare(nn.Cell): 36 def __init__(self): 37 super(UniqueSquare, self).__init__() 38 self.unique = P.Unique() 39 self.square = P.Square() 40 41 def construct(self, x): 42 x, _ = self.unique(x) 43 return self.square(x) 44 45 46@pytest.mark.level0 47@pytest.mark.platform_arm_ascend_training 48@pytest.mark.platform_x86_ascend_training 49@pytest.mark.env_onecard 50def test_unique_cpu(): 51 x = Tensor(np.array([1, 1, 2, 2, 3, 3]), mstype.int32) 52 unique = Net() 53 output = unique(x) 54 expect1 = np.array([1, 2, 3]) 55 expect2 = np.array([0, 0, 1, 1, 2, 2]) 56 assert (output[0].asnumpy() == expect1).all() 57 assert (output[1].asnumpy() == expect2).all() 58 59 60@pytest.mark.level0 61@pytest.mark.platform_arm_ascend_training 62@pytest.mark.platform_x86_ascend_training 63@pytest.mark.env_onecard 64def test_unique_square(): 65 x = Tensor(np.array([1, 1, 2, 2, 3, 3]), mstype.int32) 66 net = UniqueSquare() 67 output = net(x) 68 expect1 = np.array([1, 4, 9]) 69 assert (output.asnumpy() == expect1).all() 70