1# Copyright 2021 Huawei Technologies Co., Ltd 2# 3# Licensed under the Apache License, Version 2.0 (the "License"); 4# you may not use this file except in compliance with the License. 5# You may obtain a copy of the License at 6# 7# http://www.apache.org/licenses/LICENSE-2.0 8# 9# Unless required by applicable law or agreed to in writing, software 10# distributed under the License is distributed on an "AS IS" BASIS, 11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12# See the License for the specific language governing permissions and 13# limitations under the License. 14# ============================================================================ 15 16import numpy as np 17import pytest 18 19import mindspore.context as context 20import mindspore.nn as nn 21from mindspore import Tensor 22from mindspore.ops.operations import _grad_ops as G 23 24context.set_context(mode=context.GRAPH_MODE, device_target='CPU') 25 26 27class NetEluGrad(nn.Cell): 28 def __init__(self): 29 super(NetEluGrad, self).__init__() 30 self.elu_grad = G.EluGrad() 31 32 def construct(self, dy, y): 33 return self.elu_grad(dy, y) 34 35 36@pytest.mark.level0 37@pytest.mark.platform_x86_cpu 38@pytest.mark.env_onecard 39def test_elu_grad_fp32(): 40 y = Tensor(np.array([[[[-0.3, 1, 2], 41 [1, -0.6, 1], 42 [2, 1, -2]]]]).astype(np.float32)) 43 dy = Tensor(np.array([[[[-11, 2, 4], 44 [-1, 1, -1], 45 [-4, 4, -4]]]]).astype(np.float32)) 46 47 expect = np.array([[[[-7.7, 2, 4], 48 [-1, 0.4, -1], 49 [-4, 4, 4]]]]).astype(np.float32) 50 51 error = np.ones(shape=[1, 1, 3, 3]) * 1.0e-6 52 53 elu_grad = NetEluGrad() 54 output = elu_grad(dy, y) 55 print(output) 56 diff = np.abs(output.asnumpy() - expect) 57 double_check = diff / expect 58 assert np.all(double_check < error) 59 60 61@pytest.mark.level0 62@pytest.mark.platform_x86_cpu 63@pytest.mark.env_onecard 64def test_elu_grad_fp16(): 65 y = Tensor(np.array([[0.5, 2, 5.5], [4.5, -2, 0]]).astype(np.float16)) 66 dy = Tensor(np.array([[2, 1, 1.5], [-0.5, -1, -3]]).astype(np.float16)) 67 expect = np.array([[2, 1, 1.5], [-0.5, 1, -3]]).astype(np.float16) 68 error = np.ones(shape=[2, 3]) * 1.0e-3 69 70 elu_grad = NetEluGrad() 71 output = elu_grad(dy, y) 72 print(output) 73 diff = np.abs(output.asnumpy() - expect) 74 double_check = diff / expect 75 assert np.all(double_check < error) 76