• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1# Copyright 2021 Huawei Technologies Co., Ltd
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7# http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ============================================================================
15
16import numpy as np
17import pytest
18
19import mindspore.context as context
20import mindspore.nn as nn
21from mindspore import Tensor
22from mindspore.ops import composite as C
23from mindspore.ops import operations as P
24
25context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
26
27
28class GeluNet(nn.Cell):
29    def __init__(self):
30        super(GeluNet, self).__init__()
31        self.gelu = P.GeLU()
32
33    def construct(self, x):
34        return self.gelu(x)
35
36
37class Grad(nn.Cell):
38    def __init__(self, network):
39        super(Grad, self).__init__()
40        self.grad = C.GradOperation(get_all=True, sens_param=True)
41        self.network = network
42
43    def construct(self, input_data, sens):
44        gout = self.grad(self.network)(input_data, sens)
45        return gout
46
47
48@pytest.mark.level0
49@pytest.mark.platform_x86_cpu
50@pytest.mark.env_onecard
51def test_gelugrad():
52    x_ms = Tensor(np.array([0.58401114, 0.68800163, 0.9760397, 0.14702141, 0.46563736, 0.9607501,
53                            0.14567593, 0.12261796, 0.37054458, 0.46421242]).astype(np.float32))
54    dy_ms = Tensor(np.array([0.5559598, 0.96994054, 0.24770357, 0.34646875, 0.2984393, 0.03287048,
55                             0.55681044, 0.966908, 0.06015943, 0.6099489]).astype(np.float32))
56
57    net = GeluNet()
58    grad = Grad(net)
59
60    output = grad(x_ms, dy_ms)
61    expect = [0.50963277, 0.9414753, 0.2667653, 0.21358444, 0.25243032, 0.0352667,
62              0.34266686, 0.57757664, 0.04707306, 0.51536125]
63    assert np.allclose(output[0].asnumpy(), expect)
64