• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1# Copyright 2020 Huawei Technologies Co., Ltd
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7# http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ============================================================================
15
16import pytest
17import mindspore.context as context
18import mindspore.nn as nn
19from mindspore.ops import operations as P
20
21context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
22
23
24class Net(nn.Cell):
25    def __init__(self, shape, seed=0, seed2=0):
26        super(Net, self).__init__()
27        self.shape = shape
28        self.seed = seed
29        self.seed2 = seed2
30        self.stdnormal = P.StandardNormal(seed, seed2)
31
32    def construct(self):
33        return self.stdnormal(self.shape)
34
35
36@pytest.mark.level0
37@pytest.mark.platform_x86_cpu
38@pytest.mark.env_onecard
39def test_net():
40    seed = 10
41    seed2 = 10
42    shape = (5, 6, 8)
43    net = Net(shape, seed, seed2)
44    output = net()
45    assert output.shape == (5, 6, 8)
46    outnumpyflatten_1 = output.asnumpy().flatten()
47
48    seed = 0
49    seed2 = 10
50    shape = (5, 6, 8)
51    net = Net(shape, seed, seed2)
52    output = net()
53    assert output.shape == (5, 6, 8)
54    outnumpyflatten_2 = output.asnumpy().flatten()
55    # same seed should generate same random number
56    assert (outnumpyflatten_1 == outnumpyflatten_2).all()
57
58    seed = 0
59    seed2 = 0
60    shape = (130, 120, 141)
61    net = Net(shape, seed, seed2)
62    output = net()
63    assert output.shape == (130, 120, 141)
64