• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1# Copyright 2020 Huawei Technologies Co., Ltd
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7# http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ============================================================================
15import numpy as np
16import pytest
17from cus_square import CusSquare
18
19import mindspore.context as context
20import mindspore.nn as nn
21from mindspore import Tensor
22from mindspore.ops import composite as C
23context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
24
25
26grad_with_sens = C.GradOperation(sens_param=True)
27
28
29class Net(nn.Cell):
30    """Net definition"""
31
32    def __init__(self):
33        super(Net, self).__init__()
34        self.square = CusSquare()
35
36    def construct(self, data):
37        return self.square(data)
38
39
40@pytest.mark.level0
41@pytest.mark.platform_x86_ascend_training
42@pytest.mark.platform_arm_ascend_training
43@pytest.mark.env_onecard
44def test_net():
45    x = np.array([1.0, 4.0, 9.0]).astype(np.float32)
46    square = Net()
47    output = square(Tensor(x))
48    expect = np.array([1.0, 16.0, 81.0]).astype(np.float32)
49    assert (output.asnumpy() == expect).all()
50
51@pytest.mark.level1
52@pytest.mark.platform_x86_ascend_training
53@pytest.mark.platform_arm_ascend_training
54@pytest.mark.env_onecard
55def test_grad_net():
56    x = np.array([1.0, 4.0, 9.0]).astype(np.float32)
57    sens = np.array([1.0, 1.0, 1.0]).astype(np.float32)
58    square = Net()
59    dx = grad_with_sens(square)(Tensor(x), Tensor(sens))
60    expect = np.array([2.0, 8.0, 18.0]).astype(np.float32)
61    assert (dx.asnumpy() == expect).all()
62