1# Copyright 2020 Huawei Technologies Co., Ltd 2# 3# Licensed under the Apache License, Version 2.0 (the "License"); 4# you may not use this file except in compliance with the License. 5# You may obtain a copy of the License at 6# 7# http://www.apache.org/licenses/LICENSE-2.0 8# 9# Unless required by applicable law or agreed to in writing, software 10# distributed under the License is distributed on an "AS IS" BASIS, 11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12# See the License for the specific language governing permissions and 13# limitations under the License. 14# ============================================================================ 15 16import numpy as np 17import pytest 18 19import mindspore 20import mindspore.context as context 21import mindspore.nn as nn 22from mindspore import Tensor 23from mindspore.ops import operations as P 24 25 26class NetBoundingBoxEncode(nn.Cell): 27 def __init__(self, means=(0.0, 0.0, 0.0, 0.0), stds=(1.0, 1.0, 1.0, 1.0)): 28 super(NetBoundingBoxEncode, self).__init__() 29 self.encode = P.BoundingBoxEncode(means=means, stds=stds) 30 31 def construct(self, anchor, groundtruth): 32 return self.encode(anchor, groundtruth) 33 34def bbox2delta(proposals, gt, means, stds): 35 px = (proposals[..., 0] + proposals[..., 2]) * 0.5 36 py = (proposals[..., 1] + proposals[..., 3]) * 0.5 37 pw = proposals[..., 2] - proposals[..., 0] + 1.0 38 ph = proposals[..., 3] - proposals[..., 1] + 1.0 39 40 gx = (gt[..., 0] + gt[..., 2]) * 0.5 41 gy = (gt[..., 1] + gt[..., 3]) * 0.5 42 gw = gt[..., 2] - gt[..., 0] + 1.0 43 gh = gt[..., 3] - gt[..., 1] + 1.0 44 45 dx = (gx - px) / pw 46 dy = (gy - py) / ph 47 dw = np.log(gw / pw) 48 dh = np.log(gh / ph) 49 means = np.array(means, np.float32) 50 stds = np.array(stds, np.float32) 51 deltas = np.stack([(dx - means[0]) / stds[0], (dy - means[1]) / stds[1], 52 (dw - means[2]) / stds[2], (dh - means[3]) / stds[3]], axis=-1) 53 54 return deltas 55 56@pytest.mark.level0 57@pytest.mark.platform_x86_gpu_training 58@pytest.mark.env_onecard 59def test_boundingbox_encode(): 60 anchor = np.array([[4, 1, 6, 9], [2, 5, 5, 9]]).astype(np.float32) 61 gt = np.array([[3, 2, 7, 7], [1, 5, 5, 8]]).astype(np.float32) 62 means = (0.1, 0.1, 0.2, 0.2) 63 stds = (2.0, 2.0, 3.0, 3.0) 64 anchor_box = Tensor(anchor, mindspore.float32) 65 groundtruth_box = Tensor(gt, mindspore.float32) 66 expect_deltas = bbox2delta(anchor, gt, means, stds) 67 68 error = np.ones(shape=[2, 4]) * 1.0e-6 69 70 context.set_context(mode=context.GRAPH_MODE, device_target='GPU') 71 boundingbox_encode = NetBoundingBoxEncode(means, stds) 72 output = boundingbox_encode(anchor_box, groundtruth_box) 73 diff = output.asnumpy() - expect_deltas 74 assert np.all(abs(diff) < error) 75 76 context.set_context(mode=context.PYNATIVE_MODE, device_target='GPU') 77 boundingbox_encode = NetBoundingBoxEncode(means, stds) 78 output = boundingbox_encode(anchor_box, groundtruth_box) 79 diff = output.asnumpy() - expect_deltas 80 assert np.all(abs(diff) < error) 81