1# Copyright 2020-2021 Huawei Technologies Co., Ltd 2# 3# Licensed under the Apache License, Version 2.0 (the "License"); 4# you may not use this file except in compliance with the License. 5# You may obtain a copy of the License at 6# 7# http://www.apache.org/licenses/LICENSE-2.0 8# 9# Unless required by applicable law or agreed to in writing, software 10# distributed under the License is distributed on an "AS IS" BASIS, 11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12# See the License for the specific language governing permissions and 13# limitations under the License. 14# ============================================================================ 15 16import numpy as np 17import pytest 18 19import mindspore.context as context 20from mindspore.common.tensor import Tensor 21from mindspore.ops import operations as P 22 23 24@pytest.mark.level0 25@pytest.mark.platform_x86_gpu_training 26@pytest.mark.env_onecard 27def test_broadcast(): 28 context.set_context(mode=context.GRAPH_MODE, device_target='GPU') 29 30 shape = (3, 4, 5, 6) 31 x_np = np.random.rand(3, 1, 5, 1).astype(np.float32) 32 output = P.BroadcastTo(shape)(Tensor(x_np)) 33 expect = np.broadcast_to(x_np, shape) 34 assert np.allclose(output.asnumpy(), expect) 35 36 x1_np = np.random.rand(3, 1, 5, 1).astype(np.float16) 37 output = P.BroadcastTo(shape)(Tensor(x1_np)) 38 expect = np.broadcast_to(x1_np, shape) 39 assert np.allclose(output.asnumpy(), expect) 40 41 shape = (2, 3, 4, 5) 42 x1_np = np.random.rand(4, 5).astype(np.float32) 43 output = P.BroadcastTo(shape)(Tensor(x1_np)) 44 expect = np.broadcast_to(x1_np, shape) 45 assert np.allclose(output.asnumpy(), expect) 46 47 48@pytest.mark.level0 49@pytest.mark.platform_x86_gpu_training 50@pytest.mark.env_onecard 51def test_broadcast_dyn_init(): 52 """ 53 Test running the op with -1's in the init shape to support varied inputs. 54 """ 55 context.set_context(mode=context.GRAPH_MODE, device_target='GPU') 56 57 ms_shape = (-1, -1, 5, 6) 58 np_shape = (3, 4, 5, 6) 59 x_np = np.random.rand(3, 1, 5, 1).astype(np.float32) 60 output = P.BroadcastTo(ms_shape)(Tensor(x_np)) 61 expect = np.broadcast_to(x_np, np_shape) 62 assert np.allclose(output.asnumpy(), expect) 63 64 x1_np = np.random.rand(3, 1, 5, 1).astype(np.float16) 65 output = P.BroadcastTo(ms_shape)(Tensor(x1_np)) 66 expect = np.broadcast_to(x1_np, np_shape) 67 assert np.allclose(output.asnumpy(), expect) 68 69 ms_shape = (2, 3, -1, -1) 70 np_shape = (2, 3, 4, 5) 71 x1_np = np.random.rand(4, 5).astype(np.float32) 72 output = P.BroadcastTo(ms_shape)(Tensor(x1_np)) 73 expect = np.broadcast_to(x1_np, np_shape) 74 assert np.allclose(output.asnumpy(), expect) 75 76 77@pytest.mark.level0 78@pytest.mark.platform_x86_gpu_training 79@pytest.mark.env_onecard 80def test_broadcast_dyn_invalid_init(): 81 """ 82 Test running the op with -1's in the init shape in incorrect positions. 83 Expected to fail. 84 """ 85 context.set_context(mode=context.GRAPH_MODE, device_target='GPU') 86 ms_shape = (2, -1, 4, 5) 87 x_np = np.random.rand(4, 5).astype(np.float32) 88 with pytest.raises(ValueError): 89 P.BroadcastTo(ms_shape)(Tensor(x_np)) 90 91 context.set_context(mode=context.GRAPH_MODE, device_target='GPU') 92 ms_shape = (-1, 1, -1, -1) 93 x_np = np.random.rand(4, 5).astype(np.float32) 94 with pytest.raises(ValueError): 95 P.BroadcastTo(ms_shape)(Tensor(x_np)) 96