• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1# Copyright 2020 Huawei Technologies Co., Ltd
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7# http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ============================================================================
15
16import numpy as np
17import pytest
18
19import mindspore.nn as nn
20import mindspore.common.dtype as mstype
21from mindspore.common.initializer import Normal
22from mindspore import Tensor
23from mindspore import context
24
25context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
26
27
28@pytest.mark.level1
29@pytest.mark.platform_x86_gpu_training
30@pytest.mark.env_onecard
31def test_conv2d_depthwiseconv2d_str():
32    net = nn.Conv2d(128, 128, (2, 3), stride=4, pad_mode='valid', padding=0, group=128, weight_init='normal')
33    input_data = Tensor(np.ones([3, 128, 127, 114]), dtype=mstype.float32)
34    output = net(input_data)
35    assert output.shape == (3, 128, 32, 28)
36
37
38@pytest.mark.level1
39@pytest.mark.platform_x86_gpu_training
40@pytest.mark.env_onecard
41def test_conv2d_depthwiseconv2d_initializer():
42    net = nn.Conv2d(128, 128, (2, 3), stride=4, pad_mode='valid', padding=0, group=128, weight_init=Normal())
43    input_data = Tensor(np.ones([3, 128, 127, 114]), dtype=mstype.float32)
44    output = net(input_data)
45    assert output.shape == (3, 128, 32, 28)
46
47
48@pytest.mark.level1
49@pytest.mark.platform_x86_gpu_training
50@pytest.mark.env_onecard
51def test_conv2d_depthwiseconv2d_tensor():
52    weight_init = Tensor(np.random.randn(128, 1, 2, 3).astype(np.float32))
53    net = nn.Conv2d(128, 128, (2, 3), stride=4, pad_mode='valid', padding=0, group=128, weight_init=weight_init)
54    input_data = Tensor(np.ones([3, 128, 127, 114]), dtype=mstype.float32)
55    output = net(input_data)
56    assert output.shape == (3, 128, 32, 28)
57