• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1# Copyright 2020 Huawei Technologies Co., Ltd
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7# http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ============================================================================
15import numpy as np
16
17import mindspore.context as context
18import mindspore.nn as nn
19from mindspore import Tensor
20
21context.set_context(device_target="GPU")
22
23
24class Net(nn.Cell):
25    def __init__(self):
26        super(Net, self).__init__()
27        self.dense = nn.Dense(2048, 1001)
28
29    def construct(self, x):
30        return self.dense(x)
31
32class MultiLayerDense(nn.Cell):
33    def __init__(self):
34        super(MultiLayerDense, self).__init__()
35        self.dense1 = nn.Dense(in_channels=256, out_channels=512)
36        self.dense2 = nn.Dense(in_channels=512, out_channels=1024)
37
38    def construct(self, x):
39        x = self.dense1(x)
40        x = self.dense2(x)
41        return x
42
43
44def test_net():
45    x = np.random.randn(32, 2048).astype(np.float32)
46    net = Net()
47    output = net(Tensor(x))
48    print(x)
49    print(output.asnumpy())
50
51
52def test_net_ND():
53    x = np.random.randn(2, 332, 2048).astype(np.float32)
54    net = Net()
55    output = net(Tensor(x))
56    print(x)
57    print(output.asnumpy())
58
59
60def test_net_multilayer():
61    x = np.random.randn(16, 32, 256).astype(np.float32)
62    net = MultiLayerDense()
63    output = net(Tensor(x))
64    print(x)
65    print(output.asnumpy())
66