1# Copyright 2020 Huawei Technologies Co., Ltd 2# 3# Licensed under the Apache License, Version 2.0 (the "License"); 4# you may not use this file except in compliance with the License. 5# You may obtain a copy of the License at 6# 7# http://www.apache.org/licenses/LICENSE-2.0 8# 9# Unless required by applicable law or agreed to in writing, software 10# distributed under the License is distributed on an "AS IS" BASIS, 11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12# See the License for the specific language governing permissions and 13# limitations under the License. 14# ============================================================================ 15 16import numpy as np 17import pytest 18 19import mindspore.context as context 20import mindspore.nn as nn 21from mindspore import Tensor 22from mindspore.ops.operations import _grad_ops as G 23 24 25class NetEluGrad(nn.Cell): 26 def __init__(self): 27 super(NetEluGrad, self).__init__() 28 self.eluGrad = G.EluGrad() 29 30 def construct(self, x, dy): 31 return self.eluGrad(dy, x) 32 33 34@pytest.mark.level0 35@pytest.mark.platform_x86_gpu_training 36@pytest.mark.env_onecard 37def test_elu_grad_fp16(): 38 x = Tensor(np.array([[0.5, 2, 5.5], [4.5, -2, 0]]).astype(np.float16)) 39 dy = Tensor(np.array([[2, 1, 1.5], [-0.5, -1, -3]]).astype(np.float16)) 40 expect = np.array([[2, 1, 1.5], [-0.5, 1, -3]]).astype(np.float16) 41 error = np.ones(shape=[2, 3]) * 1.0e-6 42 43 context.set_context(mode=context.GRAPH_MODE, device_target="GPU") 44 elu_grad = NetEluGrad() 45 output = elu_grad(x, dy) 46 diff = output.asnumpy() - expect 47 assert np.all(diff < error) 48 49@pytest.mark.level0 50@pytest.mark.platform_x86_gpu_training 51@pytest.mark.env_onecard 52def test_elu_grad_fp32(): 53 x = Tensor(np.array([[0.5, 2, 5.5], [4.5, -2, 0]]).astype(np.float32)) 54 dy = Tensor(np.array([[2, 1, 1.5], [-0.5, -1, -3]]).astype(np.float32)) 55 expect = np.array([[2, 1, 1.5], [-0.5, 1, -3]]).astype(np.float32) 56 error = np.ones(shape=[2, 3]) * 1.0e-6 57 58 context.set_context(mode=context.GRAPH_MODE, device_target="GPU") 59 elu_grad = NetEluGrad() 60 output = elu_grad(x, dy) 61 diff = output.asnumpy() - expect 62 assert np.all(diff < error) 63