1# Copyright 2020 Huawei Technologies Co., Ltd 2# 3# Licensed under the Apache License, Version 2.0 (the "License"); 4# you may not use this file except in compliance with the License. 5# You may obtain a copy of the License at 6# 7# http://www.apache.org/licenses/LICENSE-2.0 8# 9# Unless required by applicable law or agreed to in writing, software 10# distributed under the License is distributed on an "AS IS" BASIS, 11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12# See the License for the specific language governing permissions and 13# limitations under the License. 14# ============================================================================ 15 16import numpy as np 17import pytest 18 19import mindspore.context as context 20import mindspore.nn as nn 21from mindspore import Tensor 22from mindspore.ops import operations as P 23 24class NetElu(nn.Cell): 25 def __init__(self): 26 super(NetElu, self).__init__() 27 self.elu = P.Elu() 28 29 def construct(self, x): 30 return self.elu(x) 31 32 33@pytest.mark.level0 34@pytest.mark.platform_x86_gpu_training 35@pytest.mark.env_onecard 36def test_elu_fp16(): 37 x = Tensor(np.array([[-1.0, 4.0, -8.0], [2.0, -5.0, 9.0]]).astype(np.float16)) 38 expect = np.array([[-0.632, 4.0, -0.999], [2.0, -0.993, 9.0]]).astype(np.float16) 39 error = np.ones(shape=[2, 3]) * 1.0e-6 40 41 context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU") 42 elu = NetElu() 43 output = elu(x) 44 diff = output.asnumpy() - expect 45 assert np.all(diff < error) 46 47 context.set_context(mode=context.GRAPH_MODE, device_target="GPU") 48 elu = NetElu() 49 output = elu(x) 50 diff = output.asnumpy() - expect 51 assert np.all(diff < error) 52 53@pytest.mark.level0 54@pytest.mark.platform_x86_gpu_training 55@pytest.mark.env_onecard 56def test_elu_fp32(): 57 x = Tensor(np.array([[-1.0, 4.0, -8.0], [2.0, -5.0, 9.0]]).astype(np.float32)) 58 expect = np.array([[-0.632, 4.0, -0.999], [2.0, -0.993, 9.0]]).astype(np.float32) 59 error = np.ones(shape=[2, 3]) * 1.0e-6 60 61 context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU") 62 elu = NetElu() 63 output = elu(x) 64 diff = output.asnumpy() - expect 65 assert np.all(diff < error) 66 67 context.set_context(mode=context.GRAPH_MODE, device_target="GPU") 68 elu = NetElu() 69 output = elu(x) 70 diff = output.asnumpy() - expect 71 assert np.all(diff < error) 72