• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1# Copyright 2019 Huawei Technologies Co., Ltd
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7# http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ============================================================================
15import numpy as np
16import pytest
17
18import mindspore.context as context
19import mindspore.nn as nn
20from mindspore import Tensor
21from mindspore.ops import operations as P
22from mindspore.ops.operations import _inner_ops as inner
23
24
25class Net(nn.Cell):
26    def __init__(self):
27        super(Net, self).__init__()
28        self.expand_dims = P.ExpandDims()
29
30    def construct(self, tensor):
31        return self.expand_dims(tensor, -1)
32
33
34class NetDynamic(nn.Cell):
35    def __init__(self):
36        super(NetDynamic, self).__init__()
37        self.conv = inner.GpuConvertToDynamicShape()
38        self.expand_dims = P.ExpandDims()
39
40    def construct(self, x):
41        x_conv = self.conv(x)
42        return self.expand_dims(x_conv, -1)
43
44
45@pytest.mark.level1
46@pytest.mark.platform_x86_gpu_training
47@pytest.mark.env_onecard
48def test_net_bool():
49    context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
50    x = np.random.randn(1, 16, 1, 1).astype(np.bool)
51    net = NetDynamic()
52    output = net(Tensor(x))
53    assert np.all(output.asnumpy() == np.expand_dims(x, -1))
54
55
56@pytest.mark.level1
57@pytest.mark.platform_x86_gpu_training
58@pytest.mark.env_onecard
59def test_net_int8():
60    context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
61    x = np.random.randn(1, 16, 1, 1).astype(np.int8)
62    net = NetDynamic()
63    output = net(Tensor(x))
64    assert np.all(output.asnumpy() == np.expand_dims(x, -1))
65
66
67@pytest.mark.level1
68@pytest.mark.platform_x86_gpu_training
69@pytest.mark.env_onecard
70def test_net_uint8():
71    context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
72    x = np.random.randn(1, 16, 1, 1).astype(np.uint8)
73    net = Net()
74    output = net(Tensor(x))
75    assert np.all(output.asnumpy() == np.expand_dims(x, -1))
76
77
78@pytest.mark.level1
79@pytest.mark.platform_x86_gpu_training
80@pytest.mark.env_onecard
81def test_net_int16():
82    context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
83    x = np.random.randn(1, 16, 1, 1).astype(np.int16)
84    net = Net()
85    output = net(Tensor(x))
86    assert np.all(output.asnumpy() == np.expand_dims(x, -1))
87
88
89@pytest.mark.level1
90@pytest.mark.platform_x86_gpu_training
91@pytest.mark.env_onecard
92def test_net_int32():
93    context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
94    x = np.random.randn(1, 16, 1, 1).astype(np.int32)
95    net = Net()
96    output = net(Tensor(x))
97    assert np.all(output.asnumpy() == np.expand_dims(x, -1))
98
99
100@pytest.mark.level1
101@pytest.mark.platform_x86_gpu_training
102@pytest.mark.env_onecard
103def test_net_int64():
104    context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
105    x = np.random.randn(1, 16, 1, 1).astype(np.int64)
106    net = Net()
107    output = net(Tensor(x))
108    assert np.all(output.asnumpy() == np.expand_dims(x, -1))
109
110
111@pytest.mark.level1
112@pytest.mark.platform_x86_gpu_training
113@pytest.mark.env_onecard
114def test_net_float16():
115    context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
116    x = np.random.randn(1, 16, 1, 1).astype(np.float16)
117    net = Net()
118    output = net(Tensor(x))
119    assert np.all(output.asnumpy() == np.expand_dims(x, -1))
120
121
122@pytest.mark.level0
123@pytest.mark.platform_x86_gpu_training
124@pytest.mark.env_onecard
125def test_net_float32():
126    context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
127    x = np.random.randn(1, 16, 1, 1).astype(np.float32)
128    net = Net()
129    output = net(Tensor(x))
130    assert np.all(output.asnumpy() == np.expand_dims(x, -1))
131
132
133@pytest.mark.level0
134@pytest.mark.platform_x86_gpu_training
135@pytest.mark.env_onecard
136def test_net_float64():
137    context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
138    x = np.random.randn(1, 16, 1, 1).astype(np.float64)
139    net = Net()
140    output = net(Tensor(x))
141    assert np.all(output.asnumpy() == np.expand_dims(x, -1))
142