• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1# Copyright 2020 Huawei Technologies Co., Ltd
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7# http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ============================================================================
15
16import numpy as np
17import pytest
18
19import mindspore.context as context
20from mindspore.common.tensor import Tensor
21import mindspore.nn as nn
22from mindspore.ops.operations import _quant_ops as Q
23
24context.set_context(mode=context.PYNATIVE_MODE, device_target='GPU', device_id=0)
25
26
27class Net(nn.Cell):
28    def __init__(self,
29                 num_bits=8,
30                 quant_delay=0,
31                 symmetric=False,
32                 narrow_range=False,
33                 training=True):
34        super(Net, self).__init__()
35        self.fake_quant = Q.FakeQuantPerLayer(num_bits=num_bits,
36                                              quant_delay=quant_delay,
37                                              symmetric=symmetric,
38                                              narrow_range=narrow_range,
39                                              training=training)
40
41    def construct(self, x, minq, maxq):
42        return self.fake_quant(x, minq, maxq)
43
44
45@pytest.mark.level0
46@pytest.mark.platform_x86_gpu_training
47@pytest.mark.env_onecard
48def test_fake_quant1():
49    # (8, false, 0.0f, 0.0f, TensorShape({2, 3}),
50    # {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f},
51    # {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f});
52    x = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0]).reshape(2, 3).astype(np.float32)
53    min_val = np.array([0]).reshape(1).astype(np.float32)
54    max_val = np.array([0]).reshape(1).astype(np.float32)
55    expect = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0]).astype(np.float32)
56
57    net = Net(num_bits=8, narrow_range=False)
58    output = net(Tensor(x), Tensor(min_val), Tensor(max_val))
59
60    error = np.ones(shape=expect.shape) * 1.0e-5
61    diff = output.asnumpy().flatten() - expect
62    print("output: ", output)
63    print("expect: ", expect)
64    assert np.all(np.abs(diff) < error)
65
66
67@pytest.mark.level1
68@pytest.mark.platform_x86_gpu_training
69@pytest.mark.env_onecard
70def test_fake_quant2():
71    # 8, false, -10.0f, 53.75f, TensorShape({2, 3}),
72    # {-10.1f, -10.0f, -9.9f, -9.75f, 53.75f, 53.8f},
73    # {-10.0f, -10.0f, -10.0f, -9.75f, 53.75f, 53.75f});
74    x = np.array([-10.1, -10.0, -9.9, -9.75, 53.75, 53.8]).reshape(2, 3).astype(np.float32)
75    min_val = np.array([-10.0]).reshape(1).astype(np.float32)
76    max_val = np.array([53.75]).reshape(1).astype(np.float32)
77    expect = np.array([-10.0, -10.0, -10.0, -9.75, 53.75, 53.75]).astype(np.float32)
78
79    net = Net(num_bits=8, narrow_range=False)
80    output = net(Tensor(x), Tensor(min_val), Tensor(max_val))
81
82    error = np.ones(shape=expect.shape) * 1.0e-5
83    diff = output.asnumpy().flatten() - expect
84    print("output: ", output)
85    print("expect: ", expect)
86    assert np.all(np.abs(diff) < error)
87
88
89@pytest.mark.level1
90@pytest.mark.platform_x86_gpu_training
91@pytest.mark.env_onecard
92def test_fake_quant3():
93    # WithVarsNoNudging_NarrowRange
94    x = np.array([-10.1, -10.0, -9.90, -9.75, 53.5, 53.6]).reshape(2, 3).astype(np.float32)
95    min_val = np.array([-10.0]).reshape(1).astype(np.float32)
96    max_val = np.array([53.5]).reshape(1).astype(np.float32)
97    expect = np.array([-10.0, -10.0, -10.0, -9.75, 53.5, 53.5]).astype(np.float32)
98
99    net = Net(num_bits=8, narrow_range=True)
100    output = net(Tensor(x), Tensor(min_val), Tensor(max_val))
101
102    error = np.ones(shape=expect.shape) * 1.0e-5
103    diff = output.asnumpy().flatten() - expect
104    print("output: ", output)
105    print("expect: ", expect)
106    assert np.all(np.abs(diff) < error)
107
108
109@pytest.mark.level1
110@pytest.mark.platform_x86_gpu_training
111@pytest.mark.env_onecard
112def test_fake_quant4():
113    # WithVarsNudgedDown_RegularRange
114    x = np.array([-0.1, 0.0, 0.1, 0.25, 63.75, 63.8]).reshape(2, 3).astype(np.float32)
115    min_val = np.array([-0.1]).reshape(1).astype(np.float32)
116    max_val = np.array([63.65]).reshape(1).astype(np.float32)
117    expect = np.array([-0.0, 0.0, 0.0, 0.25, 63.75, 63.75]).astype(np.float32)
118
119    net = Net(num_bits=8, narrow_range=False)
120    output = net(Tensor(x), Tensor(min_val), Tensor(max_val))
121
122    error = np.ones(shape=expect.shape) * 1.0e-5
123    diff = output.asnumpy().flatten() - expect
124    print("output: ", output)
125    print("expect: ", expect)
126    assert np.all(np.abs(diff) < error)
127
128
129@pytest.mark.level1
130@pytest.mark.platform_x86_gpu_training
131@pytest.mark.env_onecard
132def test_fake_quant5():
133    # WithVarsNudgedDown_NarrowRange
134    x = np.array([-0.1, 0.0, 0.1, 0.25, 63.5, 63.6]).reshape(2, 3).astype(np.float32)
135    min_val = np.array([-0.1]).reshape(1).astype(np.float32)
136    max_val = np.array([63.4]).reshape(1).astype(np.float32)
137    expect = np.array([-0.0, 0.0, 0.0, 0.25, 63.5, 63.5]).astype(np.float32)
138
139    net = Net(num_bits=8, narrow_range=True)
140    output = net(Tensor(x), Tensor(min_val), Tensor(max_val))
141
142    error = np.ones(shape=expect.shape) * 1.0e-5
143    diff = output.asnumpy().flatten() - expect
144    print("output: ", output)
145    print("expect: ", expect)
146    assert np.all(np.abs(diff) < error)
147
148
149@pytest.mark.level1
150@pytest.mark.platform_x86_gpu_training
151@pytest.mark.env_onecard
152def test_fake_quant6():
153    # WithVarsNudgedUp_RegularRange
154    x = np.array([-0.26, -0.25, -0.24, 0.0, 63.5, 63.6]).reshape(2, 3).astype(np.float32)
155    min_val = np.array([-0.125]).reshape(1).astype(np.float32)
156    max_val = np.array([63.625]).reshape(1).astype(np.float32)
157    expect = np.array([-0.25, -0.25, -0.25, 0.0, 63.5, 63.5]).astype(np.float32)
158
159    net = Net(num_bits=8, narrow_range=False)
160    output = net(Tensor(x), Tensor(min_val), Tensor(max_val))
161
162    error = np.ones(shape=expect.shape) * 1.0e-5
163    diff = output.asnumpy().flatten() - expect
164    print("output: ", output)
165    print("expect: ", expect)
166    assert np.all(np.abs(diff) < error)
167
168
169@pytest.mark.level1
170@pytest.mark.platform_x86_gpu_training
171@pytest.mark.env_onecard
172def test_fake_quant7():
173    # WithVarsNudgedUp_NarrowRange
174    x = np.array([-0.26, -0.25, -0.24, 0.0, 63.25, 63.3]).reshape(2, 3).astype(np.float32)
175    min_val = np.array([-0.125]).reshape(1).astype(np.float32)
176    max_val = np.array([63.375]).reshape(1).astype(np.float32)
177    expect = np.array([-0.25, -0.25, -0.25, 0.0, 63.25, 63.25]).astype(np.float32)
178
179    net = Net(num_bits=8, narrow_range=True)
180    output = net(Tensor(x), Tensor(min_val), Tensor(max_val))
181
182    error = np.ones(shape=expect.shape) * 1.0e-5
183    diff = output.asnumpy().flatten() - expect
184    print("output: ", output)
185    print("expect: ", expect)
186    assert np.all(np.abs(diff) < error)
187
188
189@pytest.mark.level1
190@pytest.mark.platform_x86_gpu_training
191@pytest.mark.env_onecard
192def test_fake_quant8():
193    # WithVarsNudgedZeroIs255_RegularRange
194    x = np.array([-63.80, -63.75, -63.70, -63.5, 0.0, 0.1]).reshape(2, 3).astype(np.float32)
195    min_val = np.array([-63.65]).reshape(1).astype(np.float32)
196    max_val = np.array([0.1]).reshape(1).astype(np.float32)
197    expect = np.array([-63.75, -63.75, -63.75, -63.5, 0.0, 0.0]).astype(np.float32)
198
199    net = Net(num_bits=8, narrow_range=False)
200    output = net(Tensor(x), Tensor(min_val), Tensor(max_val))
201
202    error = np.ones(shape=expect.shape) * 1.0e-5
203    diff = output.asnumpy().flatten() - expect
204    print("output: ", output)
205    print("expect: ", expect)
206    assert np.all(np.abs(diff) < error)
207
208
209@pytest.mark.level1
210@pytest.mark.platform_x86_gpu_training
211@pytest.mark.env_onecard
212def test_fake_quant9():
213    # WithVarsNudgedZeroIs255_NarrowRange
214    x = np.array([-63.6, -63.5, -63.4, -63.25, 0.0, 0.1]).reshape(2, 3).astype(np.float32)
215    min_val = np.array([-63.4]).reshape(1).astype(np.float32)
216    max_val = np.array([0.1]).reshape(1).astype(np.float32)
217    expect = np.array([-63.5, -63.5, -63.5, -63.25, 0.0, 0.0]).astype(np.float32)
218
219    net = Net(num_bits=8, narrow_range=True)
220    output = net(Tensor(x), Tensor(min_val), Tensor(max_val))
221
222    error = np.ones(shape=expect.shape) * 1.0e-5
223    diff = output.asnumpy().flatten() - expect
224    print("output: ", output)
225    print("expect: ", expect)
226    assert np.all(np.abs(diff) < error)
227
228
229@pytest.mark.level1
230@pytest.mark.platform_x86_gpu_training
231@pytest.mark.env_onecard
232def test_fake_quant10():
233    # WithVarsNoNudging_4Bits_RegularRange
234    x = np.array([-6.1, -6.0, -5.9, -5.5, 1.5, 1.6]).reshape(2, 3).astype(np.float32)
235    min_val = np.array([-6.0]).reshape(1).astype(np.float32)
236    max_val = np.array([1.5]).reshape(1).astype(np.float32)
237    expect = np.array([-6.0, -6.0, -6.0, -5.5, 1.5, 1.5]).astype(np.float32)
238
239    net = Net(num_bits=4, narrow_range=False)
240    output = net(Tensor(x), Tensor(min_val), Tensor(max_val))
241
242    error = np.ones(shape=expect.shape) * 1.0e-5
243    diff = output.asnumpy().flatten() - expect
244    print("output: ", output)
245    print("expect: ", expect)
246    assert np.all(np.abs(diff) < error)
247
248
249@pytest.mark.level1
250@pytest.mark.platform_x86_gpu_training
251@pytest.mark.env_onecard
252def test_fake_quant11():
253    # WithVarsNoNudging_4Bits_NarrowRange
254    x = np.array([-6.1, -6.0, -5.9, -5.5, 1.0, 1.1]).reshape(2, 3).astype(np.float32)
255    min_val = np.array([-6.0]).reshape(1).astype(np.float32)
256    max_val = np.array([1.0]).reshape(1).astype(np.float32)
257    expect = np.array([-6.0, -6.0, -6.0, -5.5, 1.0, 1.0]).astype(np.float32)
258
259    net = Net(num_bits=4, narrow_range=True)
260    output = net(Tensor(x), Tensor(min_val), Tensor(max_val))
261
262    error = np.ones(shape=expect.shape) * 1.0e-5
263    diff = output.asnumpy().flatten() - expect
264    print("output: ", output)
265    print("expect: ", expect)
266    assert np.all(np.abs(diff) < error)
267
268
269@pytest.mark.level1
270@pytest.mark.platform_x86_gpu_training
271@pytest.mark.env_onecard
272def test_fake_quant12():
273    # WithVarsNudgedDown_4Bits_RegularRange
274    x = np.array([-0.1, 0.0, 0.1, 0.5, 7.5, 7.6]).reshape(2, 3).astype(np.float32)
275    min_val = np.array([-0.1]).reshape(1).astype(np.float32)
276    max_val = np.array([7.4]).reshape(1).astype(np.float32)
277    expect = np.array([-0.0, 0.0, 0.0, 0.5, 7.5, 7.5]).astype(np.float32)
278
279    net = Net(num_bits=4, narrow_range=False)
280    output = net(Tensor(x), Tensor(min_val), Tensor(max_val))
281
282    error = np.ones(shape=expect.shape) * 1.0e-5
283    diff = output.asnumpy().flatten() - expect
284    print("output: ", output)
285    print("expect: ", expect)
286    assert np.all(np.abs(diff) < error)
287
288
289@pytest.mark.level1
290@pytest.mark.platform_x86_gpu_training
291@pytest.mark.env_onecard
292def test_fake_quant13():
293    # WithVarsNudgedDown_4Bits_NarrowRange
294    x = np.array([-0.1, 0.0, 0.1, 0.5, 7.0, 7.1]).reshape(2, 3).astype(np.float32)
295    min_val = np.array([-0.1]).reshape(1).astype(np.float32)
296    max_val = np.array([6.9]).reshape(1).astype(np.float32)
297    expect = np.array([-0.0, 0.0, 0.0, 0.5, 7.0, 7.0]).astype(np.float32)
298
299    net = Net(num_bits=4, narrow_range=True)
300    output = net(Tensor(x), Tensor(min_val), Tensor(max_val))
301
302    error = np.ones(shape=expect.shape) * 1.0e-5
303    diff = output.asnumpy().flatten() - expect
304    print("output: ", output)
305    print("expect: ", expect)
306    assert np.all(np.abs(diff) < error)
307
308
309@pytest.mark.level1
310@pytest.mark.platform_x86_gpu_training
311@pytest.mark.env_onecard
312def test_fake_quant14():
313    # WithVarsNudgedUp_4Bits_RegularRange
314    x = np.array([-0.6, -0.5, -0.24, 0.0, 7.0, 7.1]).reshape(2, 3).astype(np.float32)
315    min_val = np.array([-0.4]).reshape(1).astype(np.float32)
316    max_val = np.array([7.1]).reshape(1).astype(np.float32)
317    expect = np.array([-0.5, -0.5, -0.00, 0.0, 7.0, 7.0]).astype(np.float32)
318
319    net = Net(num_bits=4, narrow_range=False)
320    output = net(Tensor(x), Tensor(min_val), Tensor(max_val))
321
322    error = np.ones(shape=expect.shape) * 1.0e-5
323    diff = output.asnumpy().flatten() - expect
324    print("output: ", output)
325    print("expect: ", expect)
326    assert np.all(np.abs(diff) < error)
327
328
329@pytest.mark.level1
330@pytest.mark.platform_x86_gpu_training
331@pytest.mark.env_onecard
332def test_fake_quant15():
333    # WithVarsNudgedUp_4Bits_NarrowRange
334    x = np.array([-0.6, -0.5, -0.24, 0.0, 6.5, 6.6]).reshape(2, 3).astype(np.float32)
335    min_val = np.array([-0.4]).reshape(1).astype(np.float32)
336    max_val = np.array([6.6]).reshape(1).astype(np.float32)
337    expect = np.array([-0.5, -0.5, -0.00, 0.0, 6.5, 6.5]).astype(np.float32)
338
339    net = Net(num_bits=4, narrow_range=True)
340    output = net(Tensor(x), Tensor(min_val), Tensor(max_val))
341
342    error = np.ones(shape=expect.shape) * 1.0e-5
343    diff = output.asnumpy().flatten() - expect
344    print("output: ", output)
345    print("expect: ", expect)
346    assert np.all(np.abs(diff) < error)
347
348
349@pytest.mark.level0
350@pytest.mark.platform_x86_gpu_training
351@pytest.mark.env_onecard
352def test_fake_quant16():
353    # WithVarsNudgedZero15_4Bits_RegularRange
354    x = np.array([-7.6, -7.5, -7.4, -7.2, 0.0, 0.1]).reshape(2, 3).astype(np.float32)
355    min_val = np.array([-7.3]).reshape(1).astype(np.float32)
356    max_val = np.array([0.2]).reshape(1).astype(np.float32)
357    expect = np.array([-7.5, -7.5, -7.5, -7.0, 0.0, 0.0]).astype(np.float32)
358
359    net = Net(num_bits=4, narrow_range=False)
360    output = net(Tensor(x), Tensor(min_val), Tensor(max_val))
361
362    error = np.ones(shape=expect.shape) * 1.0e-5
363    diff = output.asnumpy().flatten() - expect
364    print("output: ", output)
365    print("expect: ", expect)
366    assert np.all(np.abs(diff) < error)
367
368
369@pytest.mark.level0
370@pytest.mark.platform_x86_gpu_training
371@pytest.mark.env_onecard
372def test_fake_quant17():
373    # WithVarsNudgedZero15_4Bits_NarrowRange
374    x = np.array([-7.1, -7.0, -6.9, -6.5, 0.0, 0.1]).reshape(2, 3).astype(np.float32)
375    min_val = np.array([-6.8]).reshape(1).astype(np.float32)
376    max_val = np.array([0.2]).reshape(1).astype(np.float32)
377    expect = np.array([-7.0, -7.0, -7.0, -6.5, 0.0, 0.0]).astype(np.float32)
378
379    net = Net(num_bits=4, narrow_range=True)
380    output = net(Tensor(x), Tensor(min_val), Tensor(max_val))
381
382    error = np.ones(shape=expect.shape) * 1.0e-5
383    diff = output.asnumpy().flatten() - expect
384    print("output: ", output)
385    print("expect: ", expect)
386    assert np.all(np.abs(diff) < error)
387