• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1# Copyright 2019 Huawei Technologies Co., Ltd
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7# http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ============================================================================
15
16import numpy as np
17import pytest
18
19import mindspore.context as context
20import mindspore.nn as nn
21from mindspore import Tensor
22from mindspore.ops.operations import _grad_ops as G
23
24
25class NetFlattenGrad(nn.Cell):
26    def __init__(self):
27        super(NetFlattenGrad, self).__init__()
28        self.flattengrad = G.FlattenGrad()
29        self.type = (2, 3)
30
31    def construct(self, x):
32        return self.flattengrad(x, self.type)
33
34
35@pytest.mark.level0
36@pytest.mark.platform_x86_gpu_training
37@pytest.mark.env_onecard
38def test_flatten_grad():
39    x = Tensor(np.array([[-0.1, 0.3, 3.6], [0.4, 0.5, -3.2]]).astype(np.float32))
40    expect = np.array([[-0.1, 0.3, 3.6],
41                       [0.4, 0.5, -3.2]]).astype(np.float32)
42
43    context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
44    flattengrad = NetFlattenGrad()
45    output = flattengrad(x)
46    assert (output.asnumpy() == expect).all()
47