• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1# Copyright 2020 Huawei Technologies Co., Ltd
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7# http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ============================================================================
15
16import numpy as np
17import pytest
18
19import mindspore.context as context
20import mindspore.nn as nn
21from mindspore import Tensor
22from mindspore.ops import operations as P
23
24class NetFloorDiv(nn.Cell):
25    def __init__(self):
26        super(NetFloorDiv, self).__init__()
27        self.floordiv = P.FloorDiv()
28
29    def construct(self, x, y):
30        return self.floordiv(x, y)
31
32@pytest.mark.level0
33@pytest.mark.platform_x86_gpu_training
34@pytest.mark.env_onecard
35def test_floor_div():
36    x0_np = np.random.randint(1, 5, (2, 3, 4, 4)).astype(np.float32)
37    y0_np = np.random.randint(1, 5, (2, 3, 4, 4)).astype(np.float32)
38    x1_np = np.random.randint(1, 5, (2, 3, 4, 4)).astype(np.float32)
39    y1_np = np.random.randint(1, 5, (2, 1, 4, 4)).astype(np.float32)
40    x2_np = np.random.randint(1, 5, (2, 1, 1, 4, 9)).astype(np.float32)
41    y2_np = np.random.randint(1, 5, (2, 3, 4, 4, 9)).astype(np.float32)
42    x3_np = np.random.randint(1, 5, 1).astype(np.float32)
43    y3_np = np.random.randint(1, 5, 1).astype(np.float32)
44    x4_np = np.array(768).astype(np.float32)
45    y4_np = np.array(3072.5).astype(np.float32)
46    x5_np = np.random.randint(1, 5, (2, 3, 4, 4)).astype(np.float16)
47    y5_np = np.random.randint(1, 5, (2, 3, 4, 4)).astype(np.float16)
48    x6_np = np.random.randint(1, 5, (2, 3, 4, 4)).astype(np.int32)
49    y6_np = np.random.randint(1, 5, (2, 1, 4, 4)).astype(np.int32)
50
51    x0 = Tensor(x0_np)
52    y0 = Tensor(y0_np)
53    x1 = Tensor(x1_np)
54    y1 = Tensor(y1_np)
55    x2 = Tensor(x2_np)
56    y2 = Tensor(y2_np)
57    x3 = Tensor(x3_np)
58    y3 = Tensor(y3_np)
59    x4 = Tensor(x4_np)
60    y4 = Tensor(y4_np)
61    x5 = Tensor(x5_np)
62    y5 = Tensor(y5_np)
63    x6 = Tensor(x6_np)
64    y6 = Tensor(y6_np)
65
66    context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
67    floor_div = NetFloorDiv()
68    output0 = floor_div(x0, y0)
69    expect0 = np.floor_divide(x0_np, y0_np)
70    diff0 = output0.asnumpy() - expect0
71    error0 = np.ones(shape=expect0.shape) * 1.0e-5
72    assert np.all(diff0 < error0)
73    assert output0.shape == expect0.shape
74
75    output1 = floor_div(x1, y1)
76    expect1 = np.floor_divide(x1_np, y1_np)
77    diff1 = output1.asnumpy() - expect1
78    error1 = np.ones(shape=expect1.shape) * 1.0e-5
79    assert np.all(diff1 < error1)
80    assert output1.shape == expect1.shape
81
82    output2 = floor_div(x2, y2)
83    expect2 = np.floor_divide(x2_np, y2_np)
84    diff2 = output2.asnumpy() - expect2
85    error2 = np.ones(shape=expect2.shape) * 1.0e-5
86    assert np.all(diff2 < error2)
87    assert output2.shape == expect2.shape
88
89    context.set_context(mode=context.PYNATIVE_MODE, device_target='GPU')
90    output3 = floor_div(x3, y3)
91    expect3 = np.floor_divide(x3_np, y3_np)
92    diff3 = output3.asnumpy() - expect3
93    error3 = np.ones(shape=expect3.shape) * 1.0e-5
94    assert np.all(diff3 < error3)
95    assert output3.shape == expect3.shape
96
97    output4 = floor_div(x4, y4)
98    expect4 = np.floor_divide(x4_np, y4_np)
99    diff4 = output4.asnumpy() - expect4
100    error4 = np.ones(shape=expect4.shape) * 1.0e-5
101    assert np.all(diff4 < error4)
102    assert output4.shape == expect4.shape
103
104    output5 = floor_div(x5, y5)
105    expect5 = np.floor_divide(x5_np, y5_np)
106    diff5 = output5.asnumpy() - expect5
107    error5 = np.ones(shape=expect5.shape) * 1.0e-5
108    assert np.all(diff5 < error5)
109    assert output5.shape == expect5.shape
110
111    output6 = floor_div(x6, y6)
112    expect6 = np.floor_divide(x6_np, y6_np)
113    diff6 = output6.asnumpy() - expect6
114    error6 = np.ones(shape=expect6.shape) * 1.0e-5
115    assert np.all(diff6 < error6)
116    assert output6.shape == expect6.shape
117