1# Copyright 2020-2021 Huawei Technologies Co., Ltd 2# 3# Licensed under the Apache License, Version 2.0 (the "License"); 4# you may not use this file except in compliance with the License. 5# You may obtain a copy of the License at 6# 7# http://www.apache.org/licenses/LICENSE-2.0 8# 9# Unless required by applicable law or agreed to in writing, software 10# distributed under the License is distributed on an "AS IS" BASIS, 11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12# See the License for the specific language governing permissions and 13# limitations under the License. 14# ============================================================================ 15 16import numpy as np 17import pytest 18from mindspore import Tensor 19from mindspore.ops import operations as P 20import mindspore.nn as nn 21import mindspore.context as context 22 23class GatherNdNet(nn.Cell): 24 def __init__(self): 25 super(GatherNdNet, self).__init__() 26 self.gathernd = P.GatherNd() 27 28 def construct(self, x, indices): 29 return self.gathernd(x, indices) 30 31 32def gathernd0(nptype): 33 x = Tensor(np.arange(3 * 2, dtype=nptype).reshape(3, 2)) 34 indices = Tensor(np.array([[1, 1], [0, 1]]).astype(np.int32)) 35 expect = np.array([3, 1]).astype(nptype) 36 37 context.set_context(mode=context.GRAPH_MODE, device_target="GPU") 38 gathernd = GatherNdNet() 39 output = gathernd(x, indices) 40 41 assert np.array_equal(output.asnumpy(), expect) 42 43@pytest.mark.level0 44@pytest.mark.platform_x86_gpu_training 45@pytest.mark.env_onecard 46def test_gathernd0_float64(): 47 gathernd0(np.float64) 48 49@pytest.mark.level0 50@pytest.mark.platform_x86_gpu_training 51@pytest.mark.env_onecard 52def test_gathernd0_float32(): 53 gathernd0(np.float32) 54 55@pytest.mark.level1 56@pytest.mark.platform_x86_gpu_training 57@pytest.mark.env_onecard 58def test_gathernd0_float16(): 59 gathernd0(np.float16) 60 61@pytest.mark.level1 62@pytest.mark.platform_x86_gpu_training 63@pytest.mark.env_onecard 64def test_gathernd0_int32(): 65 gathernd0(np.int32) 66 67@pytest.mark.level1 68@pytest.mark.platform_x86_gpu_training 69@pytest.mark.env_onecard 70def test_gathernd0_int16(): 71 gathernd0(np.int16) 72 73@pytest.mark.level1 74@pytest.mark.platform_x86_gpu_training 75@pytest.mark.env_onecard 76def test_gathernd0_uint8(): 77 gathernd0(np.uint8) 78 79def gathernd1(nptype): 80 x = Tensor(np.arange(2 * 3 * 4 * 5, dtype=nptype).reshape(2, 3, 4, 5)) 81 indices = Tensor(np.array([[[[[l, k, j, i] for i in [1, 3, 4]] for j in range(4)] 82 for k in range(3)] for l in range(2)], dtype='i4')) 83 expect = np.array([[[[1., 3., 4.], 84 [6., 8., 9.], 85 [11., 13., 14.], 86 [16., 18., 19.]], 87 88 [[21., 23., 24.], 89 [26., 28., 29.], 90 [31., 33., 34.], 91 [36., 38., 39.]], 92 93 [[41., 43., 44.], 94 [46., 48., 49.], 95 [51., 53., 54.], 96 [56., 58., 59.]]], 97 98 [[[61., 63., 64.], 99 [66., 68., 69.], 100 [71., 73., 74.], 101 [76., 78., 79.]], 102 103 [[81., 83., 84.], 104 [86., 88., 89.], 105 [91., 93., 94.], 106 [96., 98., 99.]], 107 108 [[101., 103., 104.], 109 [106., 108., 109.], 110 [111., 113., 114.], 111 [116., 118., 119.]]]]).astype(nptype) 112 113 context.set_context(mode=context.GRAPH_MODE, device_target="GPU") 114 gather = GatherNdNet() 115 output = gather(x, indices) 116 117 assert np.array_equal(output.asnumpy(), expect) 118 119@pytest.mark.level0 120@pytest.mark.platform_x86_gpu_training 121@pytest.mark.env_onecard 122def test_gathernd1_float64(): 123 gathernd1(np.float64) 124 125@pytest.mark.level0 126@pytest.mark.platform_x86_gpu_training 127@pytest.mark.env_onecard 128def test_gathernd1_float32(): 129 gathernd1(np.float32) 130 131@pytest.mark.level1 132@pytest.mark.platform_x86_gpu_training 133@pytest.mark.env_onecard 134def test_gathernd1_float16(): 135 gathernd1(np.float16) 136 137@pytest.mark.level1 138@pytest.mark.platform_x86_gpu_training 139@pytest.mark.env_onecard 140def test_gathernd1_int32(): 141 gathernd1(np.int32) 142 143@pytest.mark.level1 144@pytest.mark.platform_x86_gpu_training 145@pytest.mark.env_onecard 146def test_gathernd1_int16(): 147 gathernd1(np.int16) 148 149@pytest.mark.level1 150@pytest.mark.platform_x86_gpu_training 151@pytest.mark.env_onecard 152def test_gathernd1_uint8(): 153 gathernd1(np.uint8) 154 155def gathernd2(nptype): 156 x = Tensor(np.array([[4., 5., 4., 1., 5.], 157 [4., 9., 5., 6., 4.], 158 [9., 8., 4., 3., 6.], 159 [0., 4., 2., 2., 8.], 160 [1., 8., 6., 2., 8.], 161 [8., 1., 9., 7., 3.], 162 [7., 9., 2., 5., 7.], 163 [9., 8., 6., 8., 5.], 164 [3., 7., 2., 7., 4.], 165 [4., 2., 8., 2., 9.]]).astype(np.float16)) 166 167 indices = Tensor(np.array([[4000], [1], [300000]]).astype(np.int32)) 168 expect = np.array([[0., 0., 0., 0., 0.], 169 [4., 9., 5., 6., 4.], 170 [0., 0., 0., 0., 0.]]) 171 172 context.set_context(mode=context.GRAPH_MODE, device_target="GPU") 173 gathernd = GatherNdNet() 174 output = gathernd(x, indices) 175 176 assert np.array_equal(output.asnumpy(), expect) 177 178@pytest.mark.level0 179@pytest.mark.platform_x86_gpu_training 180@pytest.mark.env_onecard 181def test_gathernd2_float64(): 182 gathernd2(np.float64) 183 184@pytest.mark.level0 185@pytest.mark.platform_x86_gpu_training 186@pytest.mark.env_onecard 187def test_gathernd2_float32(): 188 gathernd2(np.float32) 189 190@pytest.mark.level1 191@pytest.mark.platform_x86_gpu_training 192@pytest.mark.env_onecard 193def test_gathernd2_float16(): 194 gathernd2(np.float16) 195 196@pytest.mark.level1 197@pytest.mark.platform_x86_gpu_training 198@pytest.mark.env_onecard 199def test_gathernd2_int32(): 200 gathernd2(np.int32) 201 202@pytest.mark.level1 203@pytest.mark.platform_x86_gpu_training 204@pytest.mark.env_onecard 205def test_gathernd2_int16(): 206 gathernd2(np.int16) 207 208@pytest.mark.level1 209@pytest.mark.platform_x86_gpu_training 210@pytest.mark.env_onecard 211def test_gathernd2_uint8(): 212 gathernd2(np.uint8) 213 214@pytest.mark.level1 215@pytest.mark.platform_x86_gpu_training 216@pytest.mark.env_onecard 217def test_gathernd_bool(): 218 x = Tensor(np.array([[True, False], [False, False]]).astype(np.bool)) 219 indices = Tensor(np.array([[0, 0], [0, 1], [1, 0], [1, 1]]).astype(np.int32)) 220 expect = np.array([True, False, False, False]).astype(np.bool) 221 222 context.set_context(mode=context.GRAPH_MODE, device_target="GPU") 223 gathernd = GatherNdNet() 224 output = gathernd(x, indices) 225 226 assert np.array_equal(output.asnumpy(), expect) 227 228@pytest.mark.level0 229@pytest.mark.platform_x86_gpu_training 230@pytest.mark.env_onecard 231def test_gathernd_indices_int64(): 232 x = Tensor(np.array([[True, False], [False, False]]).astype(np.bool)) 233 indices = Tensor(np.array([[0, 0], [0, 1], [1, 0], [1, 1]]).astype(np.int64)) 234 expect = np.array([True, False, False, False]).astype(np.bool) 235 236 context.set_context(mode=context.GRAPH_MODE, device_target="GPU") 237 gathernd = GatherNdNet() 238 output = gathernd(x, indices) 239 240 assert np.array_equal(output.asnumpy(), expect) 241