• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1# Copyright 2020 Huawei Technologies Co., Ltd
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7# http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ============================================================================
15
16import numpy as np
17import pytest
18
19import mindspore.context as context
20from mindspore.common.tensor import Tensor
21from mindspore.nn import Cell
22from mindspore.ops import operations as P
23
24class Net(Cell):
25    def __init__(self, axis=0, epsilon=1e-4):
26        super(Net, self).__init__()
27        self.norm = P.L2Normalize(axis=axis, epsilon=epsilon)
28
29    def construct(self, x):
30        return self.norm(x)
31
32
33@pytest.mark.level0
34@pytest.mark.platform_x86_gpu_training
35@pytest.mark.env_onecard
36def test_l2normalize():
37    x = np.random.randint(1, 10, (2, 3, 4, 4)).astype(np.float32)
38    expect = x / np.sqrt(np.sum(x**2, axis=0, keepdims=True))
39    x = Tensor(x)
40    error = np.ones(shape=[2, 3, 4, 4]) * 1.0e-5
41
42    context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
43    norm_op = Net(axis=0)
44    output = norm_op(x)
45    diff = output.asnumpy() - expect
46    assert np.all(diff < error)
47    assert np.all(-diff < error)
48