• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1# Copyright 2021 Huawei Technologies Co., Ltd
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7# http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ============================================================================
15""" test loss """
16import numpy as np
17import pytest
18
19from mindspore import Tensor
20from mindspore.ops import operations as P
21from mindspore.nn.loss.loss import LossBase
22from mindspore.nn.loss.loss import L1Loss
23import mindspore.context as context
24
25class WeightedLoss(LossBase):
26    def __init__(self, reduction='mean', weights=1.0):
27        super(WeightedLoss, self).__init__(reduction)
28        self.abs = P.Abs()
29        self.weights = weights
30
31    def construct(self, base, target):
32        x = self.abs(base - target)
33        return self.get_loss(x, self.weights)
34
35
36def weighted_loss(nptype):
37    context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
38
39    loss = WeightedLoss()
40    input_data = Tensor(np.array([[1, 2, 3], [2, 3, 4]]).astype(nptype))
41    target_data = Tensor(np.array([[0, 2, 5], [3, 1, 1]]).astype(nptype))
42    output_data = loss(input_data, target_data)
43
44    error_range = np.ones(shape=output_data.shape) * 10e-6
45    loss = WeightedLoss(weights=2.0)
46    test_output = loss(input_data, target_data)
47    diff = test_output - output_data * 2.0
48    assert np.all(abs(diff.asnumpy()) < error_range)
49
50    loss = WeightedLoss(weights=3)
51    test_output = loss(input_data, target_data)
52    diff = test_output - output_data * 3
53    assert np.all(abs(diff.asnumpy()) < error_range)
54
55    loss = WeightedLoss(weights=Tensor(np.array([[0.7, 0.3], [0.7, 0.3]]).astype(nptype)))
56    y_true = Tensor(np.array([[0., 1.], [0., 0.]]).astype(nptype))
57    y_pred = Tensor(np.array([[1., 1.], [1., 0.]]).astype(nptype))
58    test_data = 0.35
59    output = loss(y_true, y_pred)
60    diff = test_data - output.asnumpy()
61    assert np.all(abs(diff) < error_range)
62
63@pytest.mark.level0
64@pytest.mark.platform_x86_gpu_training
65@pytest.mark.env_onecard
66def test_weighted_loss_float32():
67    weighted_loss(np.float32)
68
69@pytest.mark.level0
70@pytest.mark.platform_x86_gpu_training
71@pytest.mark.env_onecard
72def test_weighted_loss_float64():
73    weighted_loss(np.float64)
74
75class CustomLoss(LossBase):
76    def __init__(self, reduction='mean'):
77        super(CustomLoss, self).__init__(reduction)
78        self.abs = P.Abs()
79
80    def construct(self, base, target):
81        x = self.abs(base - target)
82        return self.get_loss(x, weights=2.0)
83
84def custom_loss(nptype):
85    context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
86
87    loss = L1Loss()
88    input_data = Tensor(np.array([[1, 2, 3], [2, 3, 4]]).astype(nptype))
89    target_data = Tensor(np.array([[0, 2, 5], [3, 1, 1]]).astype(nptype))
90    output_data = loss(input_data, target_data)
91
92    error_range = np.ones(shape=output_data.shape) * 10e-6
93    customloss = CustomLoss()
94    test_output = customloss(input_data, target_data)
95    diff = test_output - output_data * 2.0
96    assert np.all(abs(diff.asnumpy()) < error_range)
97
98@pytest.mark.level1
99@pytest.mark.platform_x86_gpu_training
100@pytest.mark.env_onecard
101def test_custom_loss_float16():
102    custom_loss(np.float16)
103
104@pytest.mark.level0
105@pytest.mark.platform_x86_gpu_training
106@pytest.mark.env_onecard
107def test_custom_loss_float32():
108    custom_loss(np.float32)
109
110@pytest.mark.level0
111@pytest.mark.platform_x86_gpu_training
112@pytest.mark.env_onecard
113def test_custom_loss_float64():
114    custom_loss(np.float64)
115