1# Copyright 2020 Huawei Technologies Co., Ltd 2# 3# Licensed under the Apache License, Version 2.0 (the "License"); 4# you may not use this file except in compliance with the License. 5# You may obtain a copy of the License at 6# 7# http://www.apache.org/licenses/LICENSE-2.0 8# 9# Unless required by applicable law or agreed to in writing, software 10# distributed under the License is distributed on an "AS IS" BASIS, 11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12# See the License for the specific language governing permissions and 13# limitations under the License. 14# ============================================================================ 15 16import numpy as np 17import pytest 18 19import mindspore.context as context 20import mindspore.nn as nn 21from mindspore import Tensor 22from mindspore.ops import operations as P 23 24context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU") 25 26 27class NetOnesLike(nn.Cell): 28 def __init__(self): 29 super(NetOnesLike, self).__init__() 30 self.ones_like = P.OnesLike() 31 32 def construct(self, x): 33 return self.ones_like(x) 34 35 36@pytest.mark.level0 37@pytest.mark.platform_x86_gpu_training 38@pytest.mark.env_onecard 39def test_OnesLike(): 40 x0_np = np.random.uniform(-2, 2, (2, 3, 4, 4)).astype(np.float32) 41 x1_np = np.random.uniform(-2, 2, 1).astype(np.float16) 42 x2_np = np.zeros([3, 3, 3], dtype=np.int32) 43 44 x0 = Tensor(x0_np) 45 x1 = Tensor(x1_np) 46 x2 = Tensor(x2_np) 47 48 context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU") 49 ones_like = NetOnesLike() 50 output0 = ones_like(x0) 51 expect0 = np.ones_like(x0_np) 52 diff0 = output0.asnumpy() - expect0 53 error0 = np.ones(shape=expect0.shape) * 1.0e-5 54 assert np.all(diff0 < error0) 55 assert output0.shape == expect0.shape 56 57 output1 = ones_like(x1) 58 expect1 = np.ones_like(x1_np) 59 diff1 = output1.asnumpy() - expect1 60 error1 = np.ones(shape=expect1.shape) * 1.0e-5 61 assert np.all(diff1 < error1) 62 assert output1.shape == expect1.shape 63 64 context.set_context(mode=context.GRAPH_MODE, device_target="GPU") 65 ones_like = NetOnesLike() 66 output0 = ones_like(x0) 67 expect0 = np.ones_like(x0_np) 68 diff0 = output0.asnumpy() - expect0 69 error0 = np.ones(shape=expect0.shape) * 1.0e-5 70 assert np.all(diff0 < error0) 71 assert output0.shape == expect0.shape 72 73 output1 = ones_like(x1) 74 expect1 = np.ones_like(x1_np) 75 diff1 = output1.asnumpy() - expect1 76 error1 = np.ones(shape=expect1.shape) * 1.0e-5 77 assert np.all(diff1 < error1) 78 assert output1.shape == expect1.shape 79 80 output2 = ones_like(x2) 81 expect2 = np.ones_like(x2_np) 82 diff2 = output2.asnumpy() - expect2 83 error2 = np.ones(shape=expect2.shape) * 1.0e-5 84 assert np.all(diff2 < error2) 85 assert output2.shape == expect2.shape 86