• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1# Copyright 2020 Huawei Technologies Co., Ltd
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7# http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ============================================================================
15
16import numpy as np
17import pytest
18
19import mindspore.context as context
20import mindspore.nn as nn
21import mindspore.ops.operations.array_ops as P
22from mindspore import Tensor
23from mindspore.common.api import ms_function
24from mindspore.common.initializer import initializer
25from mindspore.common.parameter import Parameter
26
27
28class StackNet(nn.Cell):
29    def __init__(self, nptype):
30        super(StackNet, self).__init__()
31
32        self.stack = P.Stack(axis=2)
33        self.data_np = np.array([0] * 16).astype(nptype)
34        self.data_np = np.reshape(self.data_np, (2, 2, 2, 2))
35        self.x1 = Parameter(initializer(
36            Tensor(self.data_np), [2, 2, 2, 2]), name='x1')
37        self.x2 = Parameter(initializer(
38            Tensor(np.arange(16).reshape(2, 2, 2, 2).astype(nptype)), [2, 2, 2, 2]), name='x2')
39
40    @ms_function
41    def construct(self):
42        return self.stack((self.x1, self.x2))
43
44
45def stack(nptype):
46    context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
47    stack_ = StackNet(nptype)
48    output = stack_()
49    expect = np.array([[[[[0, 0],
50                          [0, 0]],
51                         [[0, 1],
52                          [2, 3]]],
53                        [[[0, 0],
54                          [0, 0]],
55                         [[4, 5],
56                          [6, 7]]]],
57                       [[[[0, 0],
58                          [0, 0]],
59                         [[8, 9],
60                          [10, 11]]],
61                        [[[0, 0],
62                          [0, 0]],
63                         [[12, 13],
64                          [14, 15]]]]]).astype(nptype)
65    assert (output.asnumpy() == expect).all()
66
67def stack_pynative(nptype):
68    context.set_context(mode=context.PYNATIVE_MODE, device_target='GPU')
69    x1 = np.array([0] * 16).astype(nptype)
70    x1 = np.reshape(x1, (2, 2, 2, 2))
71    x1 = Tensor(x1)
72    x2 = Tensor(np.arange(16).reshape(2, 2, 2, 2).astype(nptype))
73    expect = np.array([[[[[0, 0],
74                          [0, 0]],
75                         [[0, 1],
76                          [2, 3]]],
77                        [[[0, 0],
78                          [0, 0]],
79                         [[4, 5],
80                          [6, 7]]]],
81                       [[[[0, 0],
82                          [0, 0]],
83                         [[8, 9],
84                          [10, 11]]],
85                        [[[0, 0],
86                          [0, 0]],
87                         [[12, 13],
88                          [14, 15]]]]]).astype(nptype)
89    output = P.Stack(axis=2)((x1, x2))
90    assert (output.asnumpy() == expect).all()
91
92@pytest.mark.level0
93@pytest.mark.platform_x86_gpu_training
94@pytest.mark.env_onecard
95def test_stack_graph_float32():
96    stack(np.float32)
97
98@pytest.mark.level0
99@pytest.mark.platform_x86_gpu_training
100@pytest.mark.env_onecard
101def test_stack_graph_float16():
102    stack(np.float16)
103
104@pytest.mark.level1
105@pytest.mark.platform_x86_gpu_training
106@pytest.mark.env_onecard
107def test_stack_graph_int32():
108    stack(np.int32)
109
110@pytest.mark.level1
111@pytest.mark.platform_x86_gpu_training
112@pytest.mark.env_onecard
113def test_stack_graph_int16():
114    stack(np.int16)
115
116@pytest.mark.level1
117@pytest.mark.platform_x86_gpu_training
118@pytest.mark.env_onecard
119def test_stack_graph_uint8():
120    stack(np.uint8)
121
122@pytest.mark.level1
123@pytest.mark.platform_x86_gpu_training
124@pytest.mark.env_onecard
125def test_stack_graph_bool():
126    stack(np.bool)
127
128@pytest.mark.level0
129@pytest.mark.platform_x86_gpu_training
130@pytest.mark.env_onecard
131def test_stack_pynative_float32():
132    stack_pynative(np.float32)
133
134@pytest.mark.level0
135@pytest.mark.platform_x86_gpu_training
136@pytest.mark.env_onecard
137def test_stack_pynative_float16():
138    stack_pynative(np.float16)
139
140@pytest.mark.level1
141@pytest.mark.platform_x86_gpu_training
142@pytest.mark.env_onecard
143def test_stack_pynative_int32():
144    stack_pynative(np.int32)
145
146@pytest.mark.level1
147@pytest.mark.platform_x86_gpu_training
148@pytest.mark.env_onecard
149def test_stack_pynative_int16():
150    stack_pynative(np.int16)
151
152@pytest.mark.level1
153@pytest.mark.platform_x86_gpu_training
154@pytest.mark.env_onecard
155def test_stack_pynative_uint8():
156    stack_pynative(np.uint8)
157
158@pytest.mark.level1
159@pytest.mark.platform_x86_gpu_training
160@pytest.mark.env_onecard
161def test_stack_pynative_bool():
162    stack_pynative(np.bool)
163