• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1# Copyright 2020 Huawei Technologies Co., Ltd
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7# http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ============================================================================
15
16import numpy as np
17import pytest
18
19import mindspore.context as context
20import mindspore.nn as nn
21from mindspore import Tensor
22from mindspore.ops.operations import _grad_ops as G
23
24
25class NetReLU6Grad(nn.Cell):
26    def __init__(self):
27        super(NetReLU6Grad, self).__init__()
28        self.relu6_grad = G.ReLU6Grad()
29
30    def construct(self, x, dy):
31        return self.relu6_grad(dy, x)
32
33
34@pytest.mark.level0
35@pytest.mark.platform_x86_gpu_training
36@pytest.mark.env_onecard
37def test_relu6_grad():
38    x = Tensor(np.array([[[[-1, 1, 10],
39                           [5.9, 6.1, 6],
40                           [10, 1, -1]]]]).astype(np.float32))
41    dy = Tensor(np.array([[[[1, 1, 1],
42                            [1, 1, 1],
43                            [1, 1, 1]]]]).astype(np.float32))
44    expect = np.array([[[[0, 1, 0,],
45                         [1, 0, 0,],
46                         [0, 1, 0,]]]]).astype(np.float32)
47    error = np.ones(shape=[3, 3]) * 1.0e-6
48
49    context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
50    relu6_grad = NetReLU6Grad()
51    output = relu6_grad(x, dy)
52    diff = output.asnumpy() - expect
53    assert np.all(np.abs(diff) < error)
54