1# Copyright 2019-2021 Huawei Technologies Co., Ltd 2# 3# Licensed under the Apache License, Version 2.0 (the "License"); 4# you may not use this file except in compliance with the License. 5# You may obtain a copy of the License at 6# 7# http://www.apache.org/licenses/LICENSE-2.0 8# 9# Unless required by applicable law or agreed to in writing, software 10# distributed under the License is distributed on an "AS IS" BASIS, 11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12# See the License for the specific language governing permissions and 13# limitations under the License. 14# ============================================================================ 15 16import numpy as np 17import pytest 18 19import mindspore.context as context 20import mindspore.nn as nn 21from mindspore import Tensor 22from mindspore.ops import operations as P 23 24 25class Slice(nn.Cell): 26 def __init__(self): 27 super(Slice, self).__init__() 28 self.slice = P.Slice() 29 30 def construct(self, x): 31 return self.slice(x, (0, 1, 0), (2, 1, 3)) 32 33 34@pytest.mark.level0 35@pytest.mark.platform_x86_gpu_training 36@pytest.mark.env_onecard 37def test_slice(): 38 x = Tensor( 39 np.array([[[1, -1, 1], [2, -2, 2]], [[3, -3, 3], [4, -4, 4]], [[5, -5, 5], [6, -6, 6]]]).astype(np.float32)) 40 expect = [[[2., -2., 2.]], 41 [[4., -4., 4.]]] 42 43 context.set_context(mode=context.GRAPH_MODE, device_target="GPU") 44 slice_op = Slice() 45 output = slice_op(x) 46 assert (output.asnumpy() == expect).all() 47 48 49class SliceNet(nn.Cell): 50 def __init__(self): 51 super(SliceNet, self).__init__() 52 self.slice = P.Slice() 53 54 def construct(self, x): 55 return self.slice(x, (0, 11, 0, 0), (32, 7, 224, 224)) 56 57 58@pytest.mark.level0 59@pytest.mark.platform_x86_gpu_training 60@pytest.mark.env_onecard 61def test_slice_4d(): 62 x_np = np.random.randn(32, 24, 224, 224).astype(np.float32) 63 output_np = x_np[:, 11:18, :, :] 64 65 context.set_context(mode=context.GRAPH_MODE, device_target="GPU") 66 x_ms = Tensor(x_np) 67 net = SliceNet() 68 output_ms = net(x_ms) 69 70 assert (output_ms.asnumpy() == output_np).all() 71 72 73class Slice5DNet(nn.Cell): 74 def __init__(self): 75 super(Slice5DNet, self).__init__() 76 self.slice = P.Slice() 77 78 def construct(self, x): 79 return self.slice(x, (0, 11, 1, 2, 3), (32, 7, 14, 10, 221)) 80 81 82@pytest.mark.level0 83@pytest.mark.platform_x86_gpu_training 84@pytest.mark.env_onecard 85def test_slice_5d(): 86 x_np = np.random.randn(32, 32, 24, 224, 224).astype(np.float32) 87 output_np = x_np[:, 11:18, 1:15, 2:12, 3:224] 88 89 context.set_context(mode=context.GRAPH_MODE, device_target="GPU") 90 x_ms = Tensor(x_np) 91 net = Slice5DNet() 92 output_ms = net(x_ms) 93 94 assert (output_ms.asnumpy() == output_np).all() 95 96 97@pytest.mark.level0 98@pytest.mark.platform_x86_gpu_training 99@pytest.mark.env_onecard 100def test_slice_float64(): 101 x = Tensor( 102 np.array([[[1, -1, 1], [2, -2, 2]], [[3, -3, 3], [4, -4, 4]], [[5, -5, 5], [6, -6, 6]]]).astype(np.float64)) 103 expect = np.array([[[2., -2., 2.]], 104 [[4., -4., 4.]]]).astype(np.float64) 105 106 context.set_context(mode=context.GRAPH_MODE, device_target="GPU") 107 slice_op = Slice() 108 output = slice_op(x) 109 assert (output.asnumpy() == expect).all() 110