1# Copyright 2019-2021 Huawei Technologies Co., Ltd 2# 3# Licensed under the Apache License, Version 2.0 (the "License"); 4# you may not use this file except in compliance with the License. 5# You may obtain a copy of the License at 6# 7# http://www.apache.org/licenses/LICENSE-2.0 8# 9# Unless required by applicable law or agreed to in writing, software 10# distributed under the License is distributed on an "AS IS" BASIS, 11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12# See the License for the specific language governing permissions and 13# limitations under the License. 14# ============================================================================ 15 16import numpy as np 17import pytest 18 19import mindspore.context as context 20from mindspore.common.api import ms_function 21from mindspore.common.initializer import initializer 22from mindspore.common.parameter import Parameter 23from mindspore.common.tensor import Tensor 24from mindspore.nn import Cell 25from mindspore.ops.operations import Tile 26 27 28class TileNet(Cell): 29 def __init__(self, numpy_input): 30 super(TileNet, self).__init__() 31 self.Tile = Tile() 32 33 self.input_parameter = Parameter(initializer(Tensor(numpy_input), numpy_input.shape), name='x') 34 35 @ms_function 36 def construct(self, mul): 37 return self.Tile(self.input_parameter, mul) 38 39 40def ms_tile(nptype): 41 context.set_context(mode=context.GRAPH_MODE, device_target="GPU") 42 43 input_0 = np.arange(2).reshape((2, 1, 1)).astype(nptype) 44 mul_0 = (8, 1, 1) 45 input_1 = np.arange(32).reshape((2, 4, 4)).astype(nptype) 46 mul_1 = (2, 2, 2) 47 input_2 = np.arange(1).reshape((1, 1, 1)).astype(nptype) 48 mul_2 = (1, 1, 1) 49 50 tile_net = TileNet(input_0) 51 np_expected = np.tile(input_0, mul_0) 52 ms_output = tile_net(mul_0).asnumpy() 53 np.testing.assert_array_equal(ms_output, np_expected) 54 55 tile_net = TileNet(input_1) 56 np_expected = np.tile(input_1, mul_1) 57 ms_output = tile_net(mul_1).asnumpy() 58 np.testing.assert_array_equal(ms_output, np_expected) 59 60 tile_net = TileNet(input_2) 61 np_expected = np.tile(input_2, mul_2) 62 ms_output = tile_net(mul_2).asnumpy() 63 np.testing.assert_array_equal(ms_output, np_expected) 64 65@pytest.mark.level1 66@pytest.mark.platform_x86_gpu_training 67@pytest.mark.env_onecard 68def test_tile_float16(): 69 ms_tile(np.float16) 70 71@pytest.mark.level0 72@pytest.mark.platform_x86_gpu_training 73@pytest.mark.env_onecard 74def test_tile_float32(): 75 ms_tile(np.float32) 76 77@pytest.mark.level0 78@pytest.mark.platform_x86_gpu_training 79@pytest.mark.env_onecard 80def test_tile_float64(): 81 ms_tile(np.float64) 82 83@pytest.mark.level1 84@pytest.mark.platform_x86_gpu_training 85@pytest.mark.env_onecard 86def test_tile_int16(): 87 ms_tile(np.int16) 88 89@pytest.mark.level1 90@pytest.mark.platform_x86_gpu_training 91@pytest.mark.env_onecard 92def test_tile_int32(): 93 ms_tile(np.int32) 94 95@pytest.mark.level1 96@pytest.mark.platform_x86_gpu_training 97@pytest.mark.env_onecard 98def test_tile_int64(): 99 ms_tile(np.int64) 100