• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1# Copyright 2020-2021 Huawei Technologies Co., Ltd
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7# http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ============================================================================
15
16import numpy as np
17import pytest
18import mindspore.context as context
19from mindspore import Tensor
20from mindspore.nn import Cell
21import mindspore.ops.operations as P
22import mindspore.ops.operations._grad_ops as G
23
24
25class GeluNet(Cell):
26    def __init__(self):
27        super(GeluNet, self).__init__()
28        self.gelu = P.GeLU()
29
30    def construct(self, x):
31        return self.gelu(x)
32
33
34class GeluGradNet(Cell):
35    def __init__(self):
36        super(GeluGradNet, self).__init__()
37        self.gelu_grad = G.GeLUGrad()
38
39    def construct(self, dy, x, y):
40        return self.gelu_grad(dy, x, y)
41
42
43def cal_gelu(x):
44    tmp = np.sqrt(2.0 / np.pi) * (x + 0.044715 * x * x * x)
45    expect = 0.5 * x * (1.0 + np.tanh(tmp))
46    return expect
47
48def gelu(x, enable_graph_kernel=False):
49    context.set_context(enable_graph_kernel=enable_graph_kernel)
50    net = GeluNet()
51    result = net(Tensor(x))
52    return result
53
54def test_gelu():
55    np.random.seed(0)
56    input_x = np.random.normal(0, 1, [2, 3, 4, 3]).astype(np.float32)
57    expect = gelu(input_x, False)
58    result = gelu(input_x, True)
59    res = np.allclose(expect.asnumpy(), result.asnumpy(), rtol=1.e-4, atol=1.e-4, equal_nan=True)
60    assert res
61
62def cal_gelu_grad():
63    tanh_res = np.tanh(0.7978845608 * (input_x + 0.044715 * input_x * input_x * input_x))
64    mul_right = 0.7978845608 + 0.1070322244 * input_x * input_x
65    dx = 0.5 * (1.0 + tanh_res) + 0.5 * input_x * (1.0 - tanh_res * tanh_res) * mul_right
66    expect = input_dy * dx
67    return expect
68
69def gelu_grad(input_dy, input_x, input_y, enable_graph_kernel=False):
70    context.set_context(enable_graph_kernel=enable_graph_kernel)
71    net = GeluGradNet()
72    result = net(Tensor(input_dy), Tensor(input_x), Tensor(input_y))
73    return result
74
75def test_gelu_grad():
76    np.random.seed(0)
77    input_dy = np.random.normal(0, 1, [2, 3, 4, 3]).astype(np.float32)
78    input_x = np.random.normal(0, 1, [2, 3, 4, 3]).astype(np.float32)
79    input_y = cal_gelu(input_x)
80
81    expect = gelu_grad(input_dy, input_x, input_y, False)
82    result = gelu_grad(input_dy, input_x, input_y, True)
83    res = np.allclose(expect.asnumpy(), result.asnumpy(), rtol=1.e-4, atol=1.e-4, equal_nan=True)
84    assert res
85
86
87@pytest.mark.level0
88@pytest.mark.platform_x86_gpu_training
89@pytest.mark.env_onecard
90def test_gelu_gpu():
91    context.set_context(mode=context.GRAPH_MODE, enable_graph_kernel=True, device_target="GPU")
92    test_gelu()
93
94@pytest.mark.level0
95@pytest.mark.platform_arm_ascend_training
96@pytest.mark.platform_x86_ascend_training
97@pytest.mark.env_onecard
98def test_gelu_ascend():
99    context.set_context(mode=context.GRAPH_MODE, enable_graph_kernel=True, device_target="Ascend")
100    test_gelu()
101
102
103@pytest.mark.level0
104@pytest.mark.platform_x86_gpu_training
105@pytest.mark.env_onecard
106def test_gelu_grad_gpu():
107    context.set_context(mode=context.GRAPH_MODE, enable_graph_kernel=True, device_target="GPU")
108    test_gelu_grad()
109
110@pytest.mark.level0
111@pytest.mark.platform_arm_ascend_training
112@pytest.mark.platform_x86_ascend_training
113@pytest.mark.env_onecard
114def test_gelu_grad_ascend():
115    context.set_context(mode=context.GRAPH_MODE, enable_graph_kernel=True, device_target="Ascend")
116    test_gelu_grad()
117