1# Copyright 2021 Huawei Technologies Co., Ltd 2# 3# Licensed under the Apache License, Version 2.0 (the "License"); 4# you may not use this file except in compliance with the License. 5# You may obtain a copy of the License at 6# 7# http://www.apache.org/licenses/LICENSE-2.0 8# 9# Unless required by applicable law or agreed to in writing, software 10# distributed under the License is distributed on an "AS IS" BASIS, 11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12# See the License for the specific language governing permissions and 13# limitations under the License. 14# ============================================================================ 15import numpy as np 16import pytest 17import mindspore.context as context 18import mindspore.nn as nn 19from mindspore import Tensor 20from mindspore.ops.operations import _grad_ops as G 21 22 23class Net(nn.Cell): 24 def __init__(self): 25 super(Net, self).__init__() 26 self.relu_grad = G.ReluGrad() 27 28 def construct(self, y_backprop, x): 29 return self.relu_grad(y_backprop, x) 30 31 32def get_output(y_backprop, x, enable_graph_kernel=False): 33 context.set_context(enable_graph_kernel=enable_graph_kernel) 34 net = Net() 35 output = net(y_backprop, x) 36 return output 37 38 39def test_relu_grad(shape1, shape2, dtype): 40 x = Tensor(np.random.normal(0, 10, shape1).astype(dtype)) 41 y_backprop = Tensor(np.random.normal(0, 10, shape2).astype(dtype)) 42 expect = get_output(y_backprop, x, False) 43 output = get_output(y_backprop, x, True) 44 45 expect_np = expect.asnumpy().copy() 46 output_np = output.asnumpy().copy() 47 48 assert np.allclose(expect_np, output_np, 0.0001, 0.0001) 49 50 51@pytest.mark.level0 52@pytest.mark.platform_x86_gpu_training 53@pytest.mark.env_onecard 54def test_relu_grad_gpu(): 55 context.set_context(mode=context.GRAPH_MODE, device_target="GPU") 56 test_relu_grad((4, 3), (4, 3), np.int32) 57 test_relu_grad((12, 1), (12, 1), np.float16) 58 59 60@pytest.mark.level0 61@pytest.mark.platform_arm_ascend_training 62@pytest.mark.platform_x86_ascend_training 63@pytest.mark.env_onecard 64def test_relu_grad_ascend(): 65 context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") 66 test_relu_grad((4, 3), (4, 3), np.int32) 67 test_relu_grad((12, 1), (12, 1), np.float16) 68