• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1# Copyright 2020-2021 Huawei Technologies Co., Ltd
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7# http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ============================================================================
15import pytest
16import numpy as np
17import mindspore.context as context
18import mindspore.nn as nn
19from mindspore import Tensor
20from mindspore.ops import operations as P
21
22
23class Net(nn.Cell):
24    def __init__(self, multiples):
25        super(Net, self).__init__()
26        self.tile = P.Tile()
27        self.multiples = multiples
28
29    def construct(self, x):
30        return self.tile(x, self.multiples)
31
32
33def get_output(x, multiples, enable_graph_kernel=False):
34    context.set_context(enable_graph_kernel=enable_graph_kernel)
35    net = Net(multiples)
36    output = net(x)
37    return output
38
39
40def test_tile(shape, dtype, multiples):
41    x = Tensor(np.random.normal(0, 1, shape).astype(dtype))
42    expect = get_output(x, multiples, False)
43    output = get_output(x, multiples, True)
44
45    expect_np = expect.asnumpy().copy()
46    output_np = output.asnumpy().copy()
47
48    assert np.allclose(expect_np, output_np, 0.0001, 0.0001)
49
50
51@pytest.mark.level0
52@pytest.mark.platform_arm_ascend_training
53@pytest.mark.platform_x86_ascend_training
54@pytest.mark.env_onecard
55def test_tile_ascend():
56    context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
57    test_tile((24, 1), np.float16, (2, 2, 2))
58    test_tile((24, 1), np.float32, (1, 2))
59