• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /**
2  * Copyright 2019-2021 Huawei Technologies Co., Ltd
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  * http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 #include "common.h"
17 #include <algorithm>
18 #include <fstream>
19 #include <string>
20 #include <vector>
21 #include "minddata/dataset/core/client.h"
22 #include "minddata/dataset/core/config_manager.h"
23 #include "minddata/dataset/core/pybind_support.h"
24 #include "minddata/dataset/core/tensor.h"
25 #include "minddata/dataset/core/tensor_shape.h"
26 #include "minddata/dataset/engine/datasetops/batch_op.h"
27 #include "minddata/dataset/engine/datasetops/repeat_op.h"
28 #include "minddata/dataset/engine/datasetops/source/tf_reader_op.h"
29 
30 namespace UT {
31 #ifdef __cplusplus
32 #if __cplusplus
33 extern "C" {
34 #endif
35 #endif
36 
37 void DatasetOpTesting::SetUp() {
38   std::string install_home = "data/dataset";
39   datasets_root_path_ = install_home;
40   mindrecord_root_path_ = "data/mindrecord";
41 }
42 
43 std::vector<mindspore::dataset::TensorShape> DatasetOpTesting::ToTensorShapeVec(
44   const std::vector<std::vector<int64_t>> &v) {
45   std::vector<mindspore::dataset::TensorShape> ret_v;
46   std::transform(v.begin(), v.end(), std::back_inserter(ret_v),
47                  [](const auto &s) { return mindspore::dataset::TensorShape(s); });
48   return ret_v;
49 }
50 
51 std::vector<mindspore::dataset::DataType> DatasetOpTesting::ToDETypes(const std::vector<mindspore::DataType> &t) {
52   std::vector<mindspore::dataset::DataType> ret_t;
53   std::transform(t.begin(), t.end(), std::back_inserter(ret_t), [](const mindspore::DataType &t) {
54     return mindspore::dataset::MSTypeToDEType(static_cast<mindspore::TypeId>(t));
55   });
56   return ret_t;
57 }
58 
59 // Function to read a file into an MSTensor
60 // Note: This provides the analogous support for DETensor's CreateFromFile.
61 mindspore::MSTensor DatasetOpTesting::ReadFileToTensor(const std::string &file) {
62   if (file.empty()) {
63     MS_LOG(ERROR) << "Pointer file is nullptr; return an empty Tensor.";
64     return mindspore::MSTensor();
65   }
66   std::ifstream ifs(file);
67   if (!ifs.good()) {
68     MS_LOG(ERROR) << "File: " << file << " does not exist; return an empty Tensor.";
69     return mindspore::MSTensor();
70   }
71   if (!ifs.is_open()) {
72     MS_LOG(ERROR) << "File: " << file << " open failed; return an empty Tensor.";
73     return mindspore::MSTensor();
74   }
75 
76   ifs.seekg(0, std::ios::end);
77   size_t size = ifs.tellg();
78   mindspore::MSTensor buf("file", mindspore::DataType::kNumberTypeUInt8, {static_cast<int64_t>(size)}, nullptr, size);
79 
80   ifs.seekg(0, std::ios::beg);
81   ifs.read(reinterpret_cast<char *>(buf.MutableData()), size);
82   ifs.close();
83 
84   return buf;
85 }
86 
87 // Helper function to create a batch op
88 std::shared_ptr<mindspore::dataset::BatchOp> DatasetOpTesting::Batch(int32_t batch_size, bool drop,
89                                                                      mindspore::dataset::PadInfo pad_map) {
90   /*
91   std::shared_ptr<mindspore::dataset::ConfigManager> cfg = mindspore::dataset::GlobalContext::config_manager();
92   int32_t num_workers = cfg->num_parallel_workers();
93   int32_t op_connector_size = cfg->op_connector_size();
94   std::vector<std::string> output_columns = {};
95   std::vector<std::string> input_columns = {};
96   mindspore::dataset::py::function batch_size_func;
97   mindspore::dataset::py::function batch_map_func;
98   bool pad = false;
99   if (!pad_map.empty()) {
100     pad = true;
101   }
102   std::shared_ptr<mindspore::dataset::BatchOp> op =
103     std::make_shared<mindspore::dataset::BatchOp>(batch_size, drop, pad, op_connector_size, num_workers, input_columns,
104   output_columns, batch_size_func, batch_map_func, pad_map); return op;
105   */
106   Status rc;
107   std::shared_ptr<mindspore::dataset::BatchOp> op;
108   rc = mindspore::dataset::BatchOp::Builder(batch_size).SetDrop(drop).SetPaddingMap(pad_map).Build(&op);
109   EXPECT_TRUE(rc.IsOk());
110   return std::move(op);
111 }
112 
113 std::shared_ptr<mindspore::dataset::RepeatOp> DatasetOpTesting::Repeat(int repeat_cnt) {
114   std::shared_ptr<mindspore::dataset::RepeatOp> op = std::make_shared<mindspore::dataset::RepeatOp>(repeat_cnt);
115   return std::move(op);
116 }
117 
118 std::shared_ptr<mindspore::dataset::TFReaderOp> DatasetOpTesting::TFReader(std::string file, int num_works) {
119   std::shared_ptr<mindspore::dataset::ConfigManager> config_manager =
120     mindspore::dataset::GlobalContext::config_manager();
121   auto op_connector_size = config_manager->op_connector_size();
122   auto worker_connector_size = config_manager->worker_connector_size();
123   std::vector<std::string> columns_to_load = {};
124   std::vector<std::string> files = {file};
125   std::shared_ptr<mindspore::dataset::TFReaderOp> so = std::make_shared<mindspore::dataset::TFReaderOp>(
126     num_works, worker_connector_size, 0, files, std::make_unique<mindspore::dataset::DataSchema>(), op_connector_size,
127     columns_to_load, false, 1, 0, false);
128   (void)so->Init();
129   return std::move(so);
130 }
131 
132 std::shared_ptr<mindspore::dataset::ExecutionTree> DatasetOpTesting::Build(
133   std::vector<std::shared_ptr<mindspore::dataset::DatasetOp>> ops) {
134   std::shared_ptr<mindspore::dataset::ExecutionTree> tree = std::make_shared<mindspore::dataset::ExecutionTree>();
135   for (int i = 0; i < ops.size(); i++) {
136     tree->AssociateNode(ops[i]);
137     if (i > 0) {
138       ops[i]->AddChild(std::move(ops[i - 1]));
139     }
140     if (i == ops.size() - 1) {
141       tree->AssignRoot(ops[i]);
142     }
143   }
144   return std::move(tree);
145 }
146 
147 #ifdef __cplusplus
148 #if __cplusplus
149 }
150 #endif
151 #endif
152 }  // namespace UT
153