• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /**
2  * Copyright 2019 Huawei Technologies Co., Ltd
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  * http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 #include <string>
17 #include "./securec.h"
18 #include "minddata/dataset/core/data_type.h"
19 #include "minddata/dataset/core/tensor_shape.h"
20 #include "minddata/dataset/engine/data_schema.h"
21 #include "common/common.h"
22 #include "utils/ms_utils.h"
23 #include "gtest/gtest.h"
24 #include "utils/log_adapter.h"
25 
26 namespace common = mindspore::common;
27 
28 using namespace mindspore::dataset;
29 using mindspore::LogStream;
30 using mindspore::ExceptionType::NoExceptionType;
31 using mindspore::MsLogLevel::INFO;
32 
33 class MindDataTestTensorShape : public UT::Common {
34  public:
35   MindDataTestTensorShape() = default;
36 };
37 
38 TEST_F(MindDataTestTensorShape, TestBasics) {
39   std::vector<dsize_t> vec = {4, 5, 6};
40   TensorShape t(vec);
41   ASSERT_EQ(t.Rank(), 3);
42   ASSERT_EQ(t.Size(), 3);
43   ASSERT_EQ(t.known(), true);
44   ASSERT_EQ(t.empty(), false);
45   ASSERT_EQ(t.NumOfElements(), 120);
46   for (dsize_t i = 0; i < t.Rank(); i++) {
47     ASSERT_EQ(t[i], vec[i]);
48   }
49   ASSERT_EQ(vec, t.AsVector());
50   ASSERT_EQ(t.IsValidIndex({0, 0, 0}), true);
51   ASSERT_EQ(t.IsValidIndex({3, 4, 5}), true);
52   ASSERT_EQ(t.IsValidIndex({3, 4, 6}), false);
53   ASSERT_EQ(t.IsValidIndex({4, 5, 6}), false);
54   ASSERT_EQ(t.IsValidIndex({4, 5, 6}), false);
55   ASSERT_EQ(t.IsValidIndex({3, 3}), false);
56   ASSERT_EQ(t.IsValidIndex({-3, -3, -1}), false);
57   ASSERT_EQ(t.IsValidIndex({-1, 4, 5}), false);
58   TensorShape t2({4, 5, 6});
59   ASSERT_EQ(t, t2);
60   TensorShape t3({0});
61   ASSERT_EQ(t3.Size(), 1);
62   ASSERT_EQ(t3.NumOfElements(), 0);
63   t3 = TensorShape({0, 5, 6});
64   ASSERT_EQ(t3.Size(), 3);
65   ASSERT_EQ(t3.NumOfElements(), 0);
66 }
67 
68 TEST_F(MindDataTestTensorShape, TestScalars) {
69   TensorShape t = TensorShape::CreateScalar();
70   ASSERT_EQ(t.Rank(), 0);
71   ASSERT_EQ(t.AsVector(), std::vector<dsize_t>{});
72   ASSERT_EQ(t.known(), true);
73   TensorShape t2(std::vector<dsize_t>{});
74   ASSERT_EQ(t, t2);
75   ASSERT_EQ(t.NumOfElements(), 1);
76 }
77 
78 TEST_F(MindDataTestTensorShape, TestDims) {
79   TensorShape t = TensorShape::CreateScalar();
80   t = t.AppendDim(1);
81   t = t.AppendDim(2);
82   t = t.AppendDim(3);
83   ASSERT_EQ(t, TensorShape({1, 2, 3}));
84   TensorShape t2 = TensorShape::CreateScalar();
85   t2 = t2.PrependDim(3);
86   t2 = t2.PrependDim(2);
87   t2 = t2.PrependDim(1);
88   ASSERT_EQ(t, t2);
89   TensorShape t3({4, 5, 6});
90   t3 = t3.InsertDim(0, 1);  // 1, 4, 5, 6
91   t3 = t3.InsertDim(2, 2);  // 1, 4, 2, 5, 6
92   t3 = t3.InsertDim(4, 3);  // 1, 4, 2, 5, 3, 6
93   ASSERT_EQ(t3, TensorShape({1, 4, 2, 5, 3, 6}));
94 }
95 
96 TEST_F(MindDataTestTensorShape, TestUnknown) {
97   TensorShape t1({-1, 5, 6});
98   ASSERT_EQ(t1.AsVector(), std::vector<dsize_t>({-1, 5, 6}));
99   ASSERT_EQ(t1.known(), false);
100   TensorShape t2({5, 6});
101   t2 = t2.PrependDim(-1);
102   ASSERT_EQ(t1, t2);
103   TensorShape t3 = TensorShape::CreateUnknownRankShape();
104   ASSERT_EQ(t3.known(), false);
105   ASSERT_EQ(t3.Size(), 0);
106   TensorShape t4 = TensorShape::CreateUnknownShapeWithRank(3);
107   ASSERT_EQ(t4, TensorShape({-1, -1, -1}));
108 }
109 
110 // Test materializing a TensorShape by calling method on a given column descriptor
111 TEST_F(MindDataTestTensorShape, TestColDescriptor) {
112   int32_t rank = 0;  // not used
113   int32_t num_elements = 0;
114 
115   // Has no shape
116   ColDescriptor c1("col1", DataType(DataType::DE_INT8), TensorImpl::kFlexible, rank);
117   TensorShape generated_shape1 = TensorShape::CreateUnknownRankShape();
118   num_elements = 4;
119   Status rc = c1.MaterializeTensorShape(num_elements, &generated_shape1);
120   ASSERT_TRUE(rc.IsOk());
121   MS_LOG(INFO) << "generated_shape1: " << common::SafeCStr(generated_shape1.ToString()) << ".";
122   ASSERT_EQ(TensorShape({4}), generated_shape1);
123 
124   // Has shape <DIM_UNKNOWN> i.e. <*>
125   TensorShape requested_shape2({TensorShape::kDimUnknown});
126   ColDescriptor c2("col2", DataType(DataType::DE_INT8), TensorImpl::kFlexible, rank, &requested_shape2);
127   TensorShape generated_shape2 = TensorShape::CreateUnknownRankShape();
128   num_elements = 5;
129   rc = c2.MaterializeTensorShape(num_elements, &generated_shape2);
130   ASSERT_TRUE(rc.IsOk());
131   MS_LOG(INFO) << "generated_shape2: " << common::SafeCStr(generated_shape2.ToString()) << ".";
132   ASSERT_EQ(TensorShape({5}), generated_shape2);
133 
134   // Compute unknown dimension <*,4>
135   TensorShape requested_shape3({TensorShape::kDimUnknown, 4});
136   ColDescriptor c3("col3", DataType(DataType::DE_INT8), TensorImpl::kFlexible, rank, &requested_shape3);
137   TensorShape generated_shape3 = TensorShape::CreateUnknownRankShape();
138   num_elements = 12;
139   rc = c3.MaterializeTensorShape(num_elements, &generated_shape3);
140   ASSERT_TRUE(rc.IsOk());
141   MS_LOG(INFO) << "generated_shape3: " << common::SafeCStr(generated_shape3.ToString()) << ".";
142   ASSERT_EQ(TensorShape({3, 4}), generated_shape3);
143 
144   // Compute unknown dimension <3,*,4>
145   TensorShape requested_shape4({3, TensorShape::kDimUnknown, 4});
146   ColDescriptor c4("col4", DataType(DataType::DE_INT8), TensorImpl::kFlexible, rank, &requested_shape4);
147   TensorShape generated_shape4 = TensorShape::CreateUnknownRankShape();
148   num_elements = 24;
149   rc = c4.MaterializeTensorShape(num_elements, &generated_shape4);
150   ASSERT_TRUE(rc.IsOk());
151   MS_LOG(INFO) << "generated_shape4: " << common::SafeCStr(generated_shape4.ToString()) << ".";
152   ASSERT_EQ(TensorShape({3, 2, 4}), generated_shape4);
153 
154   // requested and generated should be the same! <2,3,4>
155   TensorShape requested_shape5({2, 3, 4});
156   ColDescriptor c5("col5", DataType(DataType::DE_INT8), TensorImpl::kFlexible, rank, &requested_shape5);
157   TensorShape generated_shape5 = TensorShape::CreateUnknownRankShape();
158   num_elements = 24;
159   rc = c5.MaterializeTensorShape(num_elements, &generated_shape5);
160   ASSERT_TRUE(rc.IsOk());
161   MS_LOG(INFO) << "generated_shape5: " << common::SafeCStr(generated_shape5.ToString()) << ".";
162   ASSERT_EQ(requested_shape5, generated_shape5);
163 
164   // expect fail due to multiple unknown dimensions
165   TensorShape requested_shape6({2, TensorShape::kDimUnknown, TensorShape::kDimUnknown});
166   ColDescriptor c6("col6", DataType(DataType::DE_INT8), TensorImpl::kFlexible, rank, &requested_shape6);
167   TensorShape generated_shape6 = TensorShape::CreateUnknownRankShape();
168   num_elements = 24;
169   rc = c6.MaterializeTensorShape(num_elements, &generated_shape6);
170   ASSERT_FALSE(rc.IsOk());
171 
172   // expect fail because the requested shape element count does not match with num elements
173   TensorShape requested_shape7({2, 3, 3});
174   ColDescriptor c7("col7", DataType(DataType::DE_INT8), TensorImpl::kFlexible, rank, &requested_shape7);
175   TensorShape generated_shape7 = TensorShape::CreateUnknownRankShape();
176   num_elements = 24;
177   rc = c7.MaterializeTensorShape(num_elements, &generated_shape7);
178   ASSERT_FALSE(rc.IsOk());
179 }
180 
181 TEST_F(MindDataTestTensorShape, TestInvalid) {
182   ASSERT_EQ(TensorShape({kDeMaxDim - 1, kDeMaxDim - 1, kDeMaxDim - 1}), TensorShape::CreateUnknownRankShape());
183 }
184