• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /**
2  * Copyright 2020 Huawei Technologies Co., Ltd
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  * http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 #include <vector>
17 #include <memory>
18 #include "common/common_test.h"
19 #include "ops/range.h"
20 #include "ir/dtype/type.h"
21 #include "ir/value.h"
22 #include "abstract/dshape.h"
23 #include "utils/tensor_construct_utils.h"
24 
25 namespace mindspore {
26 namespace ops {
27 class TestRange : public UT::Common {
28  public:
29   TestRange() {}
30   void SetUp() {}
31   void TearDown() {}
32 };
33 
34 TEST_F(TestRange, test_ops_range1) {
35   auto range = std::make_shared<Range>();
36   range->Init(1, 3, 34, 4);
37   EXPECT_EQ(range->get_d_type(), 1);
38   EXPECT_EQ(range->get_start(), 3);
39   EXPECT_EQ(range->get_limit(), 34);
40   EXPECT_EQ(range->get_delta(), 4);
41   range->set_d_type(1);
42   range->set_start(3);
43   range->set_limit(34);
44   range->set_delta(4);
45   auto abstract = range->Infer({});
46   MS_EXCEPTION_IF_NULL(abstract);
47   EXPECT_EQ(abstract->isa<abstract::AbstractTensor>(), true);
48   auto shape_ptr = abstract->BuildShape();
49   MS_EXCEPTION_IF_NULL(shape_ptr);
50   EXPECT_EQ(shape_ptr->isa<abstract::Shape>(), true);
51   auto shape = shape_ptr->cast<abstract::ShapePtr>();
52   MS_EXCEPTION_IF_NULL(shape);
53   auto shape_vec = shape->shape();
54   auto type = abstract->BuildType();
55   MS_EXCEPTION_IF_NULL(type);
56   EXPECT_EQ(type->isa<TensorType>(), true);
57   auto tensor_type = type->cast<TensorTypePtr>();
58   MS_EXCEPTION_IF_NULL(tensor_type);
59   auto data_type = tensor_type->element();
60   MS_EXCEPTION_IF_NULL(data_type);
61   EXPECT_EQ(data_type->type_id(), kNumberTypeInt32);
62   EXPECT_EQ(shape_vec.size(), 1);
63   EXPECT_EQ(shape_vec[0], 8);
64   EXPECT_EQ(range->get_d_type(), 1);
65   EXPECT_EQ(range->get_start(), 3);
66   EXPECT_EQ(range->get_limit(), 34);
67   EXPECT_EQ(range->get_delta(), 4);
68 }
69 
70 TEST_F(TestRange, test_ops_range2) {
71   auto range = std::make_shared<Range>();
72   range->Init(1, 1, 1, 1);
73   EXPECT_EQ(range->get_d_type(), 1);
74   EXPECT_EQ(range->get_start(), 1);
75   EXPECT_EQ(range->get_limit(), 1);
76   EXPECT_EQ(range->get_delta(), 1);
77   range->set_d_type(1);
78   range->set_start(1);
79   range->set_limit(1);
80   range->set_delta(1);
81   auto tensor_x1 = std::make_shared<tensor::Tensor>(kNumberTypeFloat32, std::vector<int64_t>{1});
82   auto tensor_x2 = std::make_shared<tensor::Tensor>(kNumberTypeFloat32, std::vector<int64_t>{1});
83   auto tensor_x3 = std::make_shared<tensor::Tensor>(kNumberTypeFloat32, std::vector<int64_t>{1});
84   MS_EXCEPTION_IF_NULL(tensor_x1);
85   MS_EXCEPTION_IF_NULL(tensor_x2);
86   MS_EXCEPTION_IF_NULL(tensor_x3);
87   auto data_x1 = tensor_x1->data_c();
88   MS_EXCEPTION_IF_NULL(data_x1);
89   auto val_x1 = reinterpret_cast<float *>(data_x1);
90   *val_x1 = 1.0;
91   auto data_x2 = tensor_x2->data_c();
92   MS_EXCEPTION_IF_NULL(data_x2);
93   auto val_x2 = reinterpret_cast<float *>(data_x2);
94   *val_x2 = 42.0;
95   auto data_x3 = tensor_x3->data_c();
96   MS_EXCEPTION_IF_NULL(data_x3);
97   auto val_x3 = reinterpret_cast<float *>(data_x3);
98   *val_x3 = 3.0;
99   auto abstract = range->Infer({tensor_x1->ToAbstract(), tensor_x2->ToAbstract(), tensor_x3->ToAbstract()});
100   MS_EXCEPTION_IF_NULL(abstract);
101   EXPECT_EQ(abstract->isa<abstract::AbstractTensor>(), true);
102   auto shape_ptr = abstract->BuildShape();
103   MS_EXCEPTION_IF_NULL(shape_ptr);
104   EXPECT_EQ(shape_ptr->isa<abstract::Shape>(), true);
105   auto shape = shape_ptr->cast<abstract::ShapePtr>();
106   MS_EXCEPTION_IF_NULL(shape);
107   auto shape_vec = shape->shape();
108   auto type = abstract->BuildType();
109   MS_EXCEPTION_IF_NULL(type);
110   EXPECT_EQ(type->isa<TensorType>(), true);
111   auto tensor_type = type->cast<TensorTypePtr>();
112   MS_EXCEPTION_IF_NULL(tensor_type);
113   auto data_type = tensor_type->element();
114   MS_EXCEPTION_IF_NULL(data_type);
115   EXPECT_EQ(data_type->type_id(), kNumberTypeFloat32);
116   EXPECT_EQ(shape_vec.size(), 1);
117   EXPECT_EQ(shape_vec[0], 14);
118   EXPECT_EQ(range->get_d_type(), 1);
119   EXPECT_EQ(range->get_start(), 1);
120   EXPECT_EQ(range->get_limit(), 1);
121   EXPECT_EQ(range->get_delta(), 1);
122 }
123 }  // namespace ops
124 }  // namespace mindspore
125