• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /**
2  * Copyright 2020 Huawei Technologies Co., Ltd
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  * http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "common/common_test.h"
18 #include "ir/param_info.h"
19 #include "frontend/operator/ops.h"
20 #include "backend/session/kernel_graph.h"
21 #include "backend/session/anf_runtime_algorithm.h"
22 #include "mindspore/ccsrc/runtime/device/kernel_info.h"
23 #include "utils/utils.h"
24 
25 namespace mindspore {
26 namespace session {
27 using device::KernelInfo;
28 using KernelBuildInfoBuilder = kernel::KernelBuildInfo::KernelBuildInfoBuilder;
29 
30 class KernelGraphTest : public UT::Common {
31  public:
32   KernelGraphTest() = default;
33   void SetUp() override {}
34   void TearDown() override {}
35 };
36 
37 TEST_F(KernelGraphTest, NewValueNode) {
38   auto kernel_graph = std::make_shared<KernelGraph>();
39   auto add_value = NewValueNode(MakeValue(static_cast<int64_t>(0)));
40   MS_EXCEPTION_IF_NULL(add_value);
41   std::vector<int64_t> shape = {1};
42   auto x_abstract = std::make_shared<abstract::AbstractTensor>(kFloat32, shape);
43   add_value->set_abstract(x_abstract);
44   add_value->set_kernel_info(std::make_shared<KernelInfo>());
45   auto mutable_kernel_info = dynamic_cast<device::KernelInfo *>(add_value->kernel_info());
46   MS_EXCEPTION_IF_NULL(mutable_kernel_info);
47   std::shared_ptr<KernelBuildInfoBuilder> builder = std::make_shared<KernelBuildInfoBuilder>();
48   builder->SetOutputsFormat({kOpFormat_FRAC_Z});
49   builder->SetOutputsDeviceType({kFloat32->type_id()});
50   mutable_kernel_info->set_select_kernel_build_info(builder->Build());
51   auto new_value = kernel_graph->NewValueNode(add_value);
52   EXPECT_NE(new_value, nullptr);
53   EXPECT_EQ(AnfAlgo::GetOutputInferShape(new_value, 0)[0], 1);
54   EXPECT_EQ(AnfAlgo::GetOutputInferDataType(new_value, 0), kFloat32->type_id());
55   EXPECT_EQ(AnfAlgo::GetOutputFormat(new_value, 0), kOpFormat_DEFAULT);
56   EXPECT_EQ(AnfAlgo::GetOutputDeviceDataType(new_value, 0), kTypeUnknown);
57 }
58 
59 TEST_F(KernelGraphTest, NewParameter) {
60   auto anf_graph = std::make_shared<FuncGraph>();
61   auto kernel_graph = std::make_shared<KernelGraph>();
62   // test nullptr as input
63   auto new_paramter = kernel_graph->NewParameter();
64   EXPECT_NE(new_paramter, nullptr);
65   EXPECT_TRUE(new_paramter->isa<Parameter>());
66   EXPECT_EQ(AnfAlgo::GetOutputFormat(new_paramter, 0), kOpFormat_DEFAULT);
67   EXPECT_EQ(AnfAlgo::GetOutputDeviceDataType(new_paramter, 0), kMetaTypeNone);
68   // test non-weight parameter node as input
69   std::vector<int64_t> shape = {2, 32, 224, 224};
70   auto x_abstract = std::make_shared<abstract::AbstractTensor>(kFloat32, shape);
71   auto non_weight_parameter = anf_graph->add_parameter();
72   MS_EXCEPTION_IF_NULL(non_weight_parameter);
73   non_weight_parameter->set_abstract(x_abstract);
74   auto new_non_weight_parameter = kernel_graph->NewParameter(non_weight_parameter);
75   EXPECT_NE(new_non_weight_parameter, nullptr);
76   new_non_weight_parameter->set_name("non_weight_parameter");
77   EXPECT_EQ(AnfAlgo::GetOutputInferShape(new_non_weight_parameter, 0)[1], 32);
78   EXPECT_EQ(AnfAlgo::GetOutputInferDataType(new_non_weight_parameter, 0), kFloat32->type_id());
79   EXPECT_EQ(AnfAlgo::GetOutputFormat(new_non_weight_parameter, 0), kOpFormat_DEFAULT);
80   EXPECT_EQ(AnfAlgo::GetOutputDeviceDataType(new_non_weight_parameter, 0), kFloat32->type_id());
81   EXPECT_EQ(new_non_weight_parameter->name(), "non_weight_parameter");
82   // test weight parameter node as input
83   auto weight_parameter_node = anf_graph->add_parameter();
84   MS_EXCEPTION_IF_NULL(weight_parameter_node);
85   auto param_value_new = std::make_shared<tensor::Tensor>(kNumberTypeFloat32, shape);
86   weight_parameter_node->set_default_param(param_value_new);
87   weight_parameter_node->set_abstract(x_abstract);
88   auto new_weight_parameter_node = kernel_graph->NewParameter(weight_parameter_node);
89   EXPECT_NE(new_weight_parameter_node, nullptr);
90   EXPECT_TRUE(new_weight_parameter_node->has_default());
91   EXPECT_EQ(AnfAlgo::GetOutputInferShape(new_weight_parameter_node, 0)[2], 224);
92   EXPECT_EQ(AnfAlgo::GetOutputInferDataType(new_weight_parameter_node, 0), kFloat32->type_id());
93   EXPECT_EQ(AnfAlgo::GetOutputFormat(new_weight_parameter_node, 0), kOpFormat_DEFAULT);
94   EXPECT_EQ(AnfAlgo::GetOutputDeviceDataType(new_weight_parameter_node, 0), kTypeUnknown);
95 }
96 
97 TEST_F(KernelGraphTest, NewCNode) {
98   auto kernel_graph = std::make_shared<KernelGraph>();
99   auto add_value = NewValueNode(prim::kPrimAdd);
100   std::vector<AnfNodePtr> inputs = {add_value};
101   auto new_cnode = kernel_graph->NewCNode(inputs);
102   EXPECT_NE(new_cnode, nullptr);
103   EXPECT_EQ(AnfAlgo::GetCNodeName(new_cnode), prim::kPrimAdd->name());
104   EXPECT_TRUE(AnfAlgo::GetOutputInferShape(new_cnode, 0).empty());
105   EXPECT_EQ(AnfAlgo::GetOutputInferDataType(new_cnode, 0), kMetaTypeNone);
106 }
107 
108 TEST_F(KernelGraphTest, MutableInputs) {
109   auto kernel_graph = std::make_shared<KernelGraph>();
110   auto x_parameter = kernel_graph->add_parameter();
111   MS_EXCEPTION_IF_NULL(x_parameter);
112   x_parameter->set_name("x_parameter");
113   auto y_parameter = kernel_graph->add_parameter();
114   MS_EXCEPTION_IF_NULL(y_parameter);
115   y_parameter->set_name("y_parameter");
116   std::vector<AnfNodePtr> inputs = {x_parameter, y_parameter};
117   auto mutable_inputs = kernel_graph->MutableInputs();
118   MS_EXCEPTION_IF_NULL(mutable_inputs);
119   *mutable_inputs = inputs;
120   auto first_input = kernel_graph->inputs()[0];
121   MS_EXCEPTION_IF_NULL(first_input);
122   auto first_parameter = first_input->cast<ParameterPtr>();
123   MS_EXCEPTION_IF_NULL(first_parameter);
124   EXPECT_EQ(first_parameter->name(), "x_parameter");
125   auto second_input = kernel_graph->inputs()[1];
126   MS_EXCEPTION_IF_NULL(second_input);
127   auto second_parameter = second_input->cast<ParameterPtr>();
128   MS_EXCEPTION_IF_NULL(second_parameter);
129   EXPECT_EQ(second_parameter->name(), "y_parameter");
130 }
131 
132 TEST_F(KernelGraphTest, SetExecOrderByDefault) {
133   /*
134    * define kernel graph:
135    *     x ----- y
136    *         add ----- z
137    *               mul
138    *              return
139    */
140   auto kernel_graph = std::make_shared<KernelGraph>();
141   std::vector<int64_t> shape = {2, 32, 224, 224};
142   auto abstract = std::make_shared<abstract::AbstractTensor>(kFloat32, shape);
143 
144   auto x_parameter = kernel_graph->NewParameter();
145   MS_EXCEPTION_IF_NULL(x_parameter);
146   x_parameter->set_name("x_parameter");
147   x_parameter->set_abstract(abstract);
148   auto y_parameter = kernel_graph->NewParameter();
149   MS_EXCEPTION_IF_NULL(y_parameter);
150   y_parameter->set_name("y_parameter");
151   y_parameter->set_abstract(abstract);
152   std::vector<AnfNodePtr> add_inputs = {NewValueNode(prim::kPrimAdd), x_parameter, y_parameter};
153   auto add = kernel_graph->NewCNode(add_inputs);
154   MS_EXCEPTION_IF_NULL(add);
155   add->set_abstract(abstract);
156 
157   auto z_parameter = kernel_graph->NewParameter();
158   MS_EXCEPTION_IF_NULL(z_parameter);
159   z_parameter->set_name("z_parameter");
160   z_parameter->set_abstract(abstract);
161   std::vector<AnfNodePtr> mul_inputs = {NewValueNode(prim::kPrimMul), add, z_parameter};
162   auto mul = kernel_graph->NewCNode(mul_inputs);
163   MS_EXCEPTION_IF_NULL(mul);
164   mul->set_abstract(abstract);
165 
166   std::vector<AnfNodePtr> make_tuple_inputs = {NewValueNode(prim::kPrimMakeTuple), mul};
167   auto make_tuple = kernel_graph->NewCNode(make_tuple_inputs);
168   kernel_graph->set_output(make_tuple);
169   // test outputs() function
170   auto outputs = kernel_graph->outputs();
171   EXPECT_EQ(outputs.size(), 1);
172   EXPECT_EQ(AnfAlgo::GetCNodeName(outputs[0]), prim::kPrimMul->name());
173   // test SetExecOrderByDefault() function
174   kernel_graph->SetExecOrderByDefault();
175   auto execution_order = kernel_graph->execution_order();
176   EXPECT_EQ(execution_order.size(), 2);
177   EXPECT_EQ(AnfAlgo::GetCNodeName(execution_order[0]), prim::kPrimAdd->name());
178   EXPECT_EQ(AnfAlgo::GetCNodeName(execution_order[1]), prim::kPrimMul->name());
179   // test set_execution_order() function
180   kernel_graph->set_execution_order({add});
181   execution_order = kernel_graph->execution_order();
182   EXPECT_EQ(execution_order.size(), 1);
183   EXPECT_EQ(AnfAlgo::GetCNodeName(execution_order[0]), prim::kPrimAdd->name());
184 }
185 
186 TEST_F(KernelGraphTest, SetGraphId) {
187   auto kernel_graph = std::make_shared<KernelGraph>();
188   kernel_graph->set_graph_id(1);
189   EXPECT_EQ(kernel_graph->graph_id(), 1);
190 }
191 
192 }  // namespace session
193 }  // namespace mindspore
194