• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1# Copyright 2019 Huawei Technologies Co., Ltd
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7# http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ==============================================================================
15import pytest
16
17import mindspore.dataset as ds
18import mindspore.dataset.vision.c_transforms as vision
19from mindspore import log as logger
20
21DATA_DIR = ["../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"]
22SCHEMA_DIR = "../data/dataset/test_tf_file_3_images/datasetSchema.json"
23
24
25def test_exception_01():
26    """
27    Test single exception with invalid input
28    """
29    logger.info("test_exception_01")
30    data = ds.TFRecordDataset(DATA_DIR, columns_list=["image"])
31    with pytest.raises(TypeError) as info:
32        data.map(operations=vision.Resize(100, 100), input_columns=["image"])
33    assert "Argument interpolation with value 100 is not of type [<enum 'Inter'>]" in str(info.value)
34
35
36def test_exception_02():
37    """
38    Test exceptions with invalid input, and test valid input
39    """
40    logger.info("test_exception_02")
41    num_samples = -1
42    with pytest.raises(ValueError) as info:
43        ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], num_samples=num_samples)
44    assert 'num_samples exceeds the boundary between 0 and 9223372036854775807(INT64_MAX)' in str(info.value)
45
46    num_samples = 1
47    data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], num_samples=num_samples)
48    data = data.map(operations=vision.Decode(), input_columns=["image"])
49    data = data.map(operations=vision.Resize((100, 100)), input_columns=["image"])
50    # Confirm 1 sample in dataset
51    assert sum([1 for _ in data]) == 1
52    num_iters = 0
53    for _ in data.create_dict_iterator(num_epochs=1):
54        num_iters += 1
55    assert num_iters == 1
56
57
58if __name__ == '__main__':
59    test_exception_01()
60    test_exception_02()
61