• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1# Copyright 2020 Huawei Technologies Co., Ltd
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7# http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ==============================================================================
15import copy
16import numpy as np
17import mindspore.dataset.text as text
18import mindspore.dataset as ds
19from mindspore.dataset.text import SentencePieceModel, to_str, SPieceTokenizerOutType
20
21VOCAB_FILE = "../data/dataset/test_sentencepiece/botchan.txt"
22DATA_FILE = "../data/dataset/testTokenizerData/sentencepiece_tokenizer.txt"
23
24
25def test_sentence_piece_tokenizer_callable():
26    vocab = text.SentencePieceVocab.from_file([VOCAB_FILE], 5000, 0.9995, SentencePieceModel.UNIGRAM, {})
27    tokenizer = text.SentencePieceTokenizer(vocab, out_type=SPieceTokenizerOutType.STRING)
28    data = '123'
29    assert np.array_equal(tokenizer(data), ['▁', '12', '3'])
30
31
32def test_from_vocab_to_str_UNIGRAM():
33    vocab = text.SentencePieceVocab.from_file([VOCAB_FILE], 5000, 0.9995, SentencePieceModel.UNIGRAM, {})
34    tokenizer = text.SentencePieceTokenizer(vocab, out_type=SPieceTokenizerOutType.STRING)
35    dataset = ds.TextFileDataset(DATA_FILE, shuffle=False)
36    dataset = dataset.map(operations=tokenizer)
37    expect = ['▁I', '▁sa', 'w', '▁a', '▁girl', '▁with', '▁a', '▁te', 'les', 'co', 'pe', '.']
38    for i in dataset.create_dict_iterator(num_epochs=1, output_numpy=True):
39        ret = to_str(i["text"])
40        for key, value in enumerate(ret):
41            assert value == expect[key]
42
43
44def test_from_vocab_to_str_BPE():
45    vocab = text.SentencePieceVocab.from_file([VOCAB_FILE], 5000, 0.9995, SentencePieceModel.BPE, {})
46    tokenizer = text.SentencePieceTokenizer(vocab, out_type=SPieceTokenizerOutType.STRING)
47    dataset = ds.TextFileDataset(DATA_FILE, shuffle=False)
48    dataset = dataset.map(operations=tokenizer)
49    expect = ['▁I', '▁saw', '▁a', '▁girl', '▁with', '▁a', '▁te', 'les', 'c', 'ope', '.']
50    for i in dataset.create_dict_iterator(num_epochs=1, output_numpy=True):
51        ret = to_str(i["text"])
52        for key, value in enumerate(ret):
53            assert value == expect[key]
54
55
56def test_from_vocab_to_str_CHAR():
57    vocab = text.SentencePieceVocab.from_file([VOCAB_FILE], 5000, 0.9995, SentencePieceModel.CHAR, {})
58    tokenizer = text.SentencePieceTokenizer(vocab, out_type=SPieceTokenizerOutType.STRING)
59    dataset = ds.TextFileDataset(DATA_FILE, shuffle=False)
60    dataset = dataset.map(operations=tokenizer)
61    expect = ['▁', 'I', '▁', 's', 'a', 'w', '▁', 'a', '▁', 'g', 'i', 'r', 'l', '▁', 'w', 'i', 't', 'h',\
62              '▁', 'a', '▁', 't', 'e', 'l', 'e', 's', 'c', 'o', 'p', 'e', '.']
63    for i in dataset.create_dict_iterator(num_epochs=1, output_numpy=True):
64        ret = to_str(i["text"])
65        for key, value in enumerate(ret):
66            assert value == expect[key]
67
68
69def test_from_vocab_to_str_WORD():
70    vocab = text.SentencePieceVocab.from_file([VOCAB_FILE], 5000, 0.9995, SentencePieceModel.WORD, {})
71    tokenizer = text.SentencePieceTokenizer(vocab, out_type=SPieceTokenizerOutType.STRING)
72    dataset = ds.TextFileDataset(DATA_FILE, shuffle=False)
73    dataset = dataset.map(operations=tokenizer)
74    expect = ['▁I', '▁saw', '▁a', '▁girl', '▁with', '▁a', '▁telescope.']
75    for i in dataset.create_dict_iterator(num_epochs=1, output_numpy=True):
76        ret = to_str(i["text"])
77        for key, value in enumerate(ret):
78            assert value == expect[key]
79
80
81def test_from_vocab_to_int():
82    vocab = text.SentencePieceVocab.from_file([VOCAB_FILE], 5000, 0.9995, SentencePieceModel.UNIGRAM, {})
83    tokenizer = text.SentencePieceTokenizer(vocab, out_type=SPieceTokenizerOutType.INT)
84    dataset = ds.TextFileDataset(DATA_FILE, shuffle=False)
85    dataset = dataset.map(operations=tokenizer)
86    expect = [6, 329, 183, 8, 945, 23, 8, 3783, 4382, 4641, 1405, 4]
87    for i in dataset.create_dict_iterator(num_epochs=1, output_numpy=True):
88        ret = i["text"]
89        for key, value in enumerate(ret):
90            assert value == expect[key]
91
92
93def test_from_file_to_str():
94    vocab = text.SentencePieceVocab.from_file([VOCAB_FILE], 5000, 0.9995, SentencePieceModel.UNIGRAM, {})
95    text.SentencePieceVocab.save_model(vocab, "./", "m.model")
96    tokenizer = text.SentencePieceTokenizer("./m.model", out_type=SPieceTokenizerOutType.STRING)
97    dataset = ds.TextFileDataset(DATA_FILE, shuffle=False)
98    dataset = dataset.map(operations=tokenizer)
99    expect = ['▁I', '▁sa', 'w', '▁a', '▁girl', '▁with', '▁a', '▁te', 'les', 'co', 'pe', '.']
100    for i in dataset.create_dict_iterator(num_epochs=1, output_numpy=True):
101        ret = to_str(i["text"])
102        for key, value in enumerate(ret):
103            assert value == expect[key]
104
105
106def test_from_file_to_int():
107    vocab = text.SentencePieceVocab.from_file([VOCAB_FILE], 5000, 0.9995, SentencePieceModel.UNIGRAM, {})
108    text.SentencePieceVocab.save_model(vocab, "./", "m.model")
109    tokenizer = text.SentencePieceTokenizer("./m.model", out_type=SPieceTokenizerOutType.INT)
110    dataset = ds.TextFileDataset(DATA_FILE, shuffle=False)
111    dataset = dataset.map(operations=tokenizer)
112    expect = [6, 329, 183, 8, 945, 23, 8, 3783, 4382, 4641, 1405, 4]
113    for i in dataset.create_dict_iterator(num_epochs=1, output_numpy=True):
114        ret = i["text"]
115        for key, value in enumerate(ret):
116            assert value == expect[key]
117
118
119def test_build_from_dataset():
120    data = ds.TextFileDataset(VOCAB_FILE, shuffle=False)
121    vocab = text.SentencePieceVocab.from_dataset(data, ["text"], 5000, 0.9995, SentencePieceModel.UNIGRAM, {})
122    tokenizer = text.SentencePieceTokenizer(vocab, out_type=SPieceTokenizerOutType.STRING)
123    dataset = ds.TextFileDataset(DATA_FILE, shuffle=False)
124    dataset = dataset.map(operations=tokenizer)
125    expect = ['▁I', '▁sa', 'w', '▁a', '▁girl', '▁with', '▁a', '▁te', 'les', 'co', 'pe', '.']
126    for i in dataset.create_dict_iterator(num_epochs=1, output_numpy=True):
127        ret = to_str(i["text"])
128        for key, value in enumerate(ret):
129            assert value == expect[key]
130
131
132def apply_func(dataset):
133    input_columns = ['text']
134    output_columns = ['text2']
135    dataset = dataset.rename(input_columns, output_columns)
136    return dataset
137
138
139def zip_test(dataset):
140    dataset_1 = copy.deepcopy(dataset)
141    dataset_2 = copy.deepcopy(dataset)
142    dataset_1 = dataset_1.apply(apply_func)
143    dataset_zip = ds.zip((dataset_1, dataset_2))
144    expect = ['▁I', '▁sa', 'w', '▁a', '▁girl', '▁with', '▁a', '▁te', 'les', 'co', 'pe', '.']
145    for i in dataset_zip.create_dict_iterator(num_epochs=1, output_numpy=True):
146        ret = to_str(i["text"])
147        for key, value in enumerate(ret):
148            assert value == expect[key]
149
150
151def concat_test(dataset):
152    dataset_1 = copy.deepcopy(dataset)
153    dataset = dataset.concat(dataset_1)
154    expect = ['▁I', '▁sa', 'w', '▁a', '▁girl', '▁with', '▁a', '▁te', 'les', 'co', 'pe', '.']
155    for i in dataset.create_dict_iterator(num_epochs=1, output_numpy=True):
156        ret = to_str(i["text"])
157        for key, value in enumerate(ret):
158            assert value == expect[key]
159
160def test_with_zip_concat():
161    data = ds.TextFileDataset(VOCAB_FILE, shuffle=False)
162    vocab = text.SentencePieceVocab.from_dataset(data, ["text"], 5000, 0.9995, SentencePieceModel.UNIGRAM, {})
163    tokenizer = text.SentencePieceTokenizer(vocab, out_type=SPieceTokenizerOutType.STRING)
164    dataset = ds.TextFileDataset(DATA_FILE, shuffle=False)
165    dataset = dataset.map(operations=tokenizer, num_parallel_workers=2)
166    zip_test(dataset)
167    concat_test(dataset)
168
169
170if __name__ == "__main__":
171    test_sentence_piece_tokenizer_callable()
172    test_from_vocab_to_str_UNIGRAM()
173    test_from_vocab_to_str_BPE()
174    test_from_vocab_to_str_CHAR()
175    test_from_vocab_to_str_WORD()
176    test_from_vocab_to_int()
177    test_from_file_to_str()
178    test_from_file_to_int()
179    test_build_from_dataset()
180    test_with_zip_concat()
181