• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1# Copyright 2020 Huawei Technologies Co., Ltd
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7# http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14
15import numpy as np
16
17import mindspore as ms
18import mindspore.nn as nn
19from mindspore import Tensor
20from mindspore import context
21from mindspore.common.parameter import Parameter
22from mindspore.nn.optim import Momentum
23from mindspore.ops import operations as P
24from mindspore.train import Model
25from tests.dataset_mock import MindData
26
27context.set_context(mode=context.GRAPH_MODE)
28
29
30class Dataset(MindData):
31    def __init__(self, predict, label, length=3):
32        super(Dataset, self).__init__(size=length)
33        self.predict = predict
34        self.label = label
35        self.index = 0
36        self.length = length
37
38    def __iter__(self):
39        return self
40
41    def __next__(self):
42        if self.index >= self.length:
43            raise StopIteration
44        self.index += 1
45        return self.predict, self.label
46
47    def reset(self):
48        self.index = 0
49
50
51class CommonNet(nn.Cell):
52    def __init__(self):
53        super(CommonNet, self).__init__()
54        self.weight = Parameter(Tensor(np.ones([256, 64]), dtype=ms.float32), name="mul_weight")
55        self.logicalnot = P.LogicalNot().shard(((4, 2),))
56        self.equal = P.Equal().shard(((4, 2), (4, 2)))
57
58    def construct(self, x, label):
59        x = self.equal(x, self.weight)
60        x = self.logicalnot(x)
61        return x
62
63
64def common_net():
65    epoch_size = 1
66
67    context.reset_auto_parallel_context()
68
69    context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8)
70    predict = Tensor(np.ones([32, 64]), dtype=ms.float32)
71    label = Tensor(np.ones([32]), dtype=ms.int32)
72    dataset = Dataset(predict, label, 2)
73    net = CommonNet()
74
75    optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9)
76    model = Model(net, optimizer=optimizer)
77    model.train(epoch_size, dataset, dataset_sink_mode=False)
78
79
80def test_bool_grad():
81    common_net()
82