• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1# Copyright 2020 Huawei Technologies Co., Ltd
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7# http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ============================================================================
15import numpy as np
16import mindspore as ms
17import mindspore.context as context
18from mindspore import Tensor, Parameter
19import mindspore.nn as nn
20from mindspore.common.api import _cell_graph_executor
21from mindspore.nn import TrainOneStepCell, Momentum
22from mindspore.ops import operations as P
23
24
25class Net(nn.Cell):
26    def __init__(self, weight1, strategy1=None, strategy2=None, is_parameter=True):
27        super(Net, self).__init__()
28        self.shape = (8, 48, 64)
29        self.broadcast = P.BroadcastTo(self.shape).shard(strategy1)
30        self.mul = P.Mul().shard(strategy2)
31        if is_parameter:
32            self.weight1 = Parameter(weight1, "w1")
33        else:
34            self.weight1 = weight1
35
36    def construct(self, x):
37        out = self.broadcast(self.weight1)
38        out = self.mul(x, out)
39        return out
40
41
42class MatMulNet(nn.Cell):
43    def __init__(self, weight1, strategy1=None, strategy2=None, strategy3=None, is_parameter=True):
44        super(MatMulNet, self).__init__()
45        self.shape = (8, 64, 64)
46        self.broadcast = P.BroadcastTo(self.shape).shard(strategy1)
47        self.matmul = P.BatchMatMul().shard(strategy2)
48        self.mul = P.Mul().shard(strategy3)
49        if is_parameter:
50            self.weight1 = Parameter(weight1, "w1")
51        else:
52            self.weight1 = weight1
53
54    def construct(self, x1, x2):
55        out = self.broadcast(x2)
56        out = self.matmul(x1, out)
57        out = self.mul(out, self.weight1)
58        return out
59
60
61_w1 = Tensor(np.ones([1, 48, 64]), dtype=ms.float32)
62_x1 = Tensor(np.ones([8, 48, 64]), dtype=ms.float32)
63_x2 = Tensor(np.ones([64, 64]), dtype=ms.float32)
64
65
66def compile_net(net):
67    context.set_context(mode=context.GRAPH_MODE)
68    optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9)
69    train_net = TrainOneStepCell(net, optimizer)
70    train_net.set_auto_parallel()
71    train_net.set_train()
72    _cell_graph_executor.compile(train_net, _x1)
73    context.reset_auto_parallel_context()
74
75
76def compile_net2(net):
77    context.set_context(mode=context.GRAPH_MODE)
78    optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9)
79    train_net = TrainOneStepCell(net, optimizer)
80    train_net.set_auto_parallel()
81    train_net.set_train()
82    _cell_graph_executor.compile(train_net, _x1, _x2)
83    context.reset_auto_parallel_context()
84
85
86def test_BroadcastTo_parameter():
87    context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
88    strategy1 = ((1, 4, 2),)
89    strategy2 = ((1, 4, 2), (1, 4, 2))
90    net = Net(_w1, strategy1, strategy2)
91    compile_net(net)
92
93
94def test_BroadcastTo_parameter_no_full():
95    context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
96    strategy1 = ((1, 2, 2),)
97    strategy2 = ((1, 4, 2), (1, 4, 2))
98    net = Net(_w1, strategy1, strategy2)
99    compile_net(net)
100
101
102def test_BroadcastTo_auto_parallel():
103    context.set_auto_parallel_context(parallel_mode="auto_parallel", device_num=8, global_rank=0)
104    net = Net(_w1)
105    compile_net(net)
106
107
108def test_BroadcastTo_matmul():
109    context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
110    strategy1 = ((2, 4),)
111    strategy2 = ((1, 1, 2), (1, 2, 4))
112    strategy3 = ((1, 2, 4), (1, 2, 4))
113    net = MatMulNet(_w1, strategy1, strategy2, strategy3)
114    compile_net2(net)
115