• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1# Copyright 2021 Huawei Technologies Co., Ltd
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7# http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14
15import numpy as np
16import mindspore as ms
17import mindspore.context as context
18from mindspore import Tensor, Parameter
19import mindspore.nn as nn
20from mindspore.common.api import _cell_graph_executor
21from mindspore.nn import TrainOneStepCell, Momentum
22from mindspore.ops import operations as P
23
24class Net(nn.Cell):
25    def __init__(self, wi, stra1=None, stra2=None, stra3=None):
26        super(Net, self).__init__()
27        self.wi = Parameter(wi, "wi")
28        self.matmul = P.MatMul().shard(stra1)
29        self.onehot = P.OneHot(axis=-1).shard(stra2)
30        self.mul = P.Mul().shard(stra3)
31        self.on_value = Tensor(1.0, ms.float32)
32        self.off_value = Tensor(0.0, ms.float32)
33        self.cast = P.Cast()
34        self.depth = 48
35
36    def construct(self, x):
37        output = self.matmul(x, self.wi)
38        output = self.cast(output, ms.int32)
39        output = self.onehot(output, self.depth, self.on_value, self.off_value)
40        output = self.mul(output, output)
41        return output
42
43_x = Tensor(np.ones([16, 48]), dtype=ms.float32)
44_wi = Tensor(np.ones([48, 16]), dtype=ms.float32)
45
46
47def compile_net(net):
48    context.set_context(mode=context.GRAPH_MODE)
49    optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9)
50    train_net = TrainOneStepCell(net, optimizer)
51    train_net.set_auto_parallel()
52    train_net.set_train()
53    _cell_graph_executor.compile(train_net, _x)
54    context.reset_auto_parallel_context()
55
56
57def test_onehot():
58    context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, enable_alltoall=True,
59                                      global_rank=0)
60    stra1 = ((8, 1), (1, 1))
61    stra2 = ((8, 1, 1), (), ())
62    stra3 = ((8, 1, 1), (8, 1, 1))
63    net = Net(_wi, stra1=stra1, stra2=stra2, stra3=stra3)
64    compile_net(net)
65