1# Copyright 2019 Huawei Technologies Co., Ltd 2# 3# Licensed under the Apache License, Version 2.0 (the "License"); 4# you may not use this file except in compliance with the License. 5# You may obtain a copy of the License at 6# 7# http://www.apache.org/licenses/LICENSE-2.0 8# 9# Unless required by applicable law or agreed to in writing, software 10# distributed under the License is distributed on an "AS IS" BASIS, 11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12# See the License for the specific language governing permissions and 13# limitations under the License. 14 15import numpy as np 16 17import mindspore as ms 18import mindspore.nn as nn 19from mindspore import Tensor 20from mindspore import context 21from mindspore.common.api import _cell_graph_executor 22from mindspore.ops import composite as C 23from mindspore.ops import functional as F 24from mindspore.ops import operations as P 25 26 27grad_all = C.GradOperation(get_all=True) 28 29 30class GradWrap(nn.Cell): 31 def __init__(self, network): 32 super(GradWrap, self).__init__() 33 self.network = network 34 35 def construct(self, x, y): 36 return grad_all(self.network)(x, y) 37 38 39def test_sum_as_loss(): 40 class Net(nn.Cell): 41 def __init__(self, strategy0, strategy1): 42 super().__init__() 43 self.fc_nobias = P.MatMul(transpose_b=True).shard(strategy0) 44 self.reduce_sum = P.ReduceSum(keep_dims=False).shard(strategy1) 45 self.mul = P.Mul().shard(strategy=((), ())) 46 47 def construct(self, x, y): 48 out = self.fc_nobias(x, y) 49 out = self.reduce_sum(out, (0, 1)) 50 out = self.mul(out, F.scalar_to_array(2.0)) 51 return out 52 53 context.set_auto_parallel_context(device_num=16, global_rank=0) 54 55 strategy0 = ((4, 1), (4, 1)) 56 strategy1 = ((4, 1),) 57 net = GradWrap(Net(strategy0, strategy1)) 58 context.set_auto_parallel_context(parallel_mode="semi_auto_parallel") 59 net.set_auto_parallel() 60 61 x = Tensor(np.ones([64, 32]), dtype=ms.float32) 62 y = Tensor(np.ones([64, 32]), dtype=ms.float32) 63 net.set_train() 64 _cell_graph_executor.compile(net, x, y) 65