• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1# Copyright 2020 Huawei Technologies Co., Ltd
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7# http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ============================================================================
15""" test super"""
16import numpy as np
17
18import mindspore.nn as nn
19from mindspore import Tensor
20from mindspore import context
21
22context.set_context(mode=context.GRAPH_MODE)
23
24
25class FatherNet(nn.Cell):
26    def __init__(self, x):
27        super(FatherNet, self).__init__(x)
28        self.x = x
29
30    def construct(self, x, y):
31        return self.x * x
32
33    def test_father(self, x):
34        return self.x + x
35
36
37class MatherNet(nn.Cell):
38    def __init__(self, y):
39        super(MatherNet, self).__init__()
40        self.y = y
41
42    def construct(self, x, y):
43        return self.y * y
44
45    def test_mather(self, y):
46        return self.y + y
47
48
49class SingleSubNet(FatherNet):
50    def __init__(self, x, z):
51        super(SingleSubNet, self).__init__(x)
52        self.z = z
53
54    def construct(self, x, y):
55        ret_father_construct = super().construct(x, y)
56        ret_father_test = super(SingleSubNet, self).test_father(x)
57        ret_father_x = super(SingleSubNet, self).x
58        ret_sub_z = self.z
59
60        return ret_father_construct, ret_father_test, ret_father_x, ret_sub_z
61
62
63class MulSubNet(FatherNet, MatherNet):
64    def __init__(self, x, y, z):
65        super(MulSubNet, self).__init__(x)
66        super(FatherNet, self).__init__(y)
67        self.z = z
68
69    def construct(self, x, y):
70        ret_father_construct = super().construct(x, y)
71        ret_father_test = super(MulSubNet, self).test_father(x)
72        ret_father_x = super(MulSubNet, self).x
73        ret_mather_construct = super(FatherNet, self).construct(x, y)
74        ret_mather_test = super(FatherNet, self).test_mather(y)
75        ret_mather_y = super(FatherNet, self).y
76        ret_sub_z = self.z
77
78        return ret_father_construct, ret_father_test, ret_father_x, \
79               ret_mather_construct, ret_mather_test, ret_mather_y, ret_sub_z
80
81
82class Net(nn.Cell):
83    def __init__(self, x):
84        super(Net, self).__init__()
85        self.x = x
86
87    def construct(self, x, y):
88        ret = super(Net, self).construct(x, y)
89        return ret
90
91
92def test_single_super():
93    single_net = SingleSubNet(2, 3)
94    x = Tensor(np.ones([1, 2, 3], np.int32))
95    y = Tensor(np.ones([1, 2, 3], np.int32))
96    single_net(x, y)
97
98
99def test_mul_super():
100    mul_net = MulSubNet(2, 3, 4)
101    x = Tensor(np.ones([1, 2, 3], np.int32))
102    y = Tensor(np.ones([1, 2, 3], np.int32))
103    mul_net(x, y)
104
105
106def test_super_cell():
107    net = Net(2)
108    x = Tensor(np.ones([1, 2, 3], np.int32))
109    y = Tensor(np.ones([1, 2, 3], np.int32))
110    assert net(x, y) is None
111
112
113def test_single_super_in():
114    class FatherNetIn(nn.Cell):
115        def __init__(self, x):
116            super(FatherNetIn, self).__init__(x)
117            self.x = x
118
119        def construct(self, x, y):
120            return self.x * x
121
122        def test_father(self, x):
123            return self.x + x
124
125    class SingleSubNetIN(FatherNetIn):
126        def __init__(self, x, z):
127            super(SingleSubNetIN, self).__init__(x)
128            self.z = z
129
130        def construct(self, x, y):
131            ret_father_construct = super().construct(x, y)
132            ret_father_test = super(SingleSubNetIN, self).test_father(x)
133            ret_father_x = super(SingleSubNetIN, self).x
134            ret_sub_z = self.z
135
136            return ret_father_construct, ret_father_test, ret_father_x, ret_sub_z
137
138    single_net_in = SingleSubNetIN(2, 3)
139    x = Tensor(np.ones([1, 2, 3], np.int32))
140    y = Tensor(np.ones([1, 2, 3], np.int32))
141    single_net_in(x, y)
142