• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1# Copyright 2020 Huawei Technologies Co., Ltd
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7# http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ============================================================================
15""" test_grad """
16import numpy as np
17
18import mindspore as ms
19import mindspore.ops.operations as P
20from mindspore import Tensor, context
21from mindspore.common.api import ms_function
22from mindspore.ops import composite as C
23from ...ut_filter import non_graph_engine
24
25
26# pylint: disable=unused-argument
27def setup_module(module):
28    context.set_context(mode=context.PYNATIVE_MODE)
29
30
31grad = C.GradOperation()
32grad_all_with_sens = C.GradOperation(get_all=True, sens_param=True)
33
34
35def mul(x, y):
36    return x * y
37
38
39@ms_function
40def mainf(x, y):
41    return grad(mul)(x, y)
42
43
44@non_graph_engine
45def test_grad():
46    mainf(1, 2)
47
48
49@non_graph_engine
50def Xtest_expand_dims_grad():
51    """ test_expand_dims_grad """
52    input_tensor = Tensor(np.array([[2, 2], [2, 2]]))
53    expand_dims = P.ExpandDims()
54
55    def fn(x):
56        output = expand_dims(x, 0)
57        return output
58
59    out = fn(input_tensor)
60    gfn = grad_all_with_sens(fn)
61    sens = Tensor(np.ones_like(out.asnumpy()))
62    args = [input_tensor, sens]
63    gout = gfn(*args)
64    expect = np.ones([2, 2])
65    assert np.all(gout[0].asnumpy() == expect)
66
67
68def test_cast_grad():
69    """ test_cast_grad """
70    input_np = np.random.randn(2, 3).astype(np.float32)
71    input_x = Tensor(input_np)
72
73    td = ms.int32
74    cast = P.Cast()
75
76    def fn(x):
77        output = cast(x, td)
78        return output
79
80    out = fn(input_x)
81    gfn = grad_all_with_sens(fn)
82    sens = Tensor(np.ones_like(out.asnumpy()))
83    args = [input_x, sens]
84    gout = gfn(*args)
85    expect = np.ones((2, 3), dtype=np.float32)
86    assert np.all(gout[0].asnumpy() == expect)
87
88
89@non_graph_engine
90def test_reshape_grad():
91    """ test_reshape_grad """
92    input_tensor = Tensor(np.array([[-0.1, 0.3, 3.6], [0.4, 0.5, -3.2]]))
93    shp = (3, 2)
94    reshape = P.Reshape()
95
96    def fn(x):
97        output = reshape(x, shp)
98        return output
99
100    out = fn(input_tensor)
101    gfn = grad_all_with_sens(fn)
102    sens = Tensor(np.ones_like(out.asnumpy()))
103    args = [input_tensor, sens]
104    gout = gfn(*args)
105    expect = np.ones([2, 3])
106    assert np.all(gout[0].asnumpy() == expect)
107
108
109def test_transpose_grad():
110    """ test_transpose_grad """
111    input_tensor = Tensor(np.array([[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]]))
112    perm = (0, 2, 1)
113    transpose = P.Transpose()
114
115    def fn(x):
116        output = transpose(x, perm)
117        return output
118
119    out = fn(input_tensor)
120    gfn = grad_all_with_sens(fn)
121    sens = Tensor(np.ones_like(out.asnumpy()))
122    args = [input_tensor, sens]
123    gout = gfn(*args)
124    expect = np.ones([2, 2, 3])
125    assert np.all(gout[0].asnumpy() == expect)
126
127
128def test_select_grad():
129    """ test_select_grad """
130    select = P.Select()
131    cond = Tensor(np.array([[True, False, False], [False, True, True]]))
132    x = Tensor(np.array([[1, 2, 3], [4, 5, 6]]).astype(np.float32))
133    y = Tensor(np.array([[7, 8, 9], [10, 11, 12]]).astype(np.float32))
134
135    def fn(cond, x, y):
136        output = select(cond, x, y)
137        return output
138
139    out = fn(cond, x, y)
140    gfn = grad_all_with_sens(fn)
141    sens = Tensor(np.ones_like(out.asnumpy()).astype(np.float32))
142    args = [cond, x, y, sens]
143    gout = gfn(*args)
144    expect_cond = np.zeros_like(cond.asnumpy())
145    expect_x = np.array([[1, 0, 0], [0, 1, 1]])
146    expect_y = np.array([[0, 1, 1], [1, 0, 0]])
147    assert np.all(gout[0].asnumpy() == expect_cond)
148    assert np.all(gout[1].asnumpy() == expect_x)
149    assert np.all(gout[2].asnumpy() == expect_y)
150
151
152@non_graph_engine
153def test_squeeze_grad():
154    """ test_squeeze_grad """
155    input_tensor = Tensor(np.ones(shape=[3, 2, 1]))
156    squeeze = P.Squeeze(2)
157
158    def fn(x):
159        output = squeeze(x)
160        return output
161
162    out = fn(input_tensor)
163    gfn = grad_all_with_sens(fn)
164    sens = Tensor(np.ones_like(out.asnumpy()))
165    args = [input_tensor, sens]
166    gout = gfn(*args)
167    expect = np.ones([3, 2, 1])
168    assert np.all(gout[0].asnumpy() == expect)
169
170
171def test_SubGrad():
172    """ test_SubGrad """
173    input_x = Tensor(np.array([[2, 2]]))
174    input_y = Tensor(np.array([[2, 2], [2, 2]]))
175    sub = P.Sub()
176
177    def fn(x, y):
178        output = sub(x, y)
179        return output
180
181    out = fn(input_x, input_y)
182    gfn = grad_all_with_sens(fn)
183    sens = Tensor(np.ones_like(out.asnumpy()))
184    args = [input_x, input_y, sens]
185    gout = gfn(*args)
186    expect_dx = np.ones([1, 2]).astype(np.int32) * 2  # reduce sum dout to the shape of x
187    expect_dy = np.ones([2, 2]).astype(np.int32) * (-1)
188    assert np.array_equal(gout[0].asnumpy(), expect_dx)
189    assert np.array_equal(gout[1].asnumpy(), expect_dy)
190
191
192def test_MulGrad():
193    """ test_MulGrad """
194    input_x = Tensor(np.array([[2, 2], [2, 2]], np.float32))
195    input_y = Tensor(np.array([[3, 3], [3, 3]], np.float32))
196    mymul = P.Mul()
197
198    def fn(x, y):
199        output = mymul(x, y)
200        return output
201
202    out = fn(input_x, input_y)
203    gfn = grad_all_with_sens(fn)
204    sens = Tensor(np.ones_like(out.asnumpy()) * 3)
205    args = [input_x, input_y, sens]
206    gout = gfn(*args)
207    expect_dx = np.ones([2, 2], np.float32) * 9
208    expect_dy = np.ones([2, 2], np.float32) * 6
209    assert np.all(gout[0].asnumpy().shape == expect_dx.shape)
210    assert np.all(gout[0].asnumpy() == expect_dx)
211    assert np.all(gout[1].asnumpy().shape == expect_dy.shape)
212    assert np.all(gout[1].asnumpy() == expect_dy)
213