• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Based on arch/arm/mm/init.c
4  *
5  * Copyright (C) 1995-2005 Russell King
6  * Copyright (C) 2012 ARM Ltd.
7  */
8 
9 #include <linux/kernel.h>
10 #include <linux/export.h>
11 #include <linux/errno.h>
12 #include <linux/swap.h>
13 #include <linux/init.h>
14 #include <linux/cache.h>
15 #include <linux/mman.h>
16 #include <linux/nodemask.h>
17 #include <linux/initrd.h>
18 #include <linux/gfp.h>
19 #include <linux/memblock.h>
20 #include <linux/sort.h>
21 #include <linux/of.h>
22 #include <linux/of_fdt.h>
23 #include <linux/dma-direct.h>
24 #include <linux/dma-map-ops.h>
25 #include <linux/efi.h>
26 #include <linux/swiotlb.h>
27 #include <linux/vmalloc.h>
28 #include <linux/mm.h>
29 #include <linux/kexec.h>
30 #include <linux/crash_dump.h>
31 #include <linux/hugetlb.h>
32 #include <linux/acpi_iort.h>
33 
34 #include <asm/boot.h>
35 #include <asm/fixmap.h>
36 #include <asm/kasan.h>
37 #include <asm/kernel-pgtable.h>
38 #include <asm/memory.h>
39 #include <asm/numa.h>
40 #include <asm/sections.h>
41 #include <asm/setup.h>
42 #include <linux/sizes.h>
43 #include <asm/tlb.h>
44 #include <asm/alternative.h>
45 
46 /*
47  * We need to be able to catch inadvertent references to memstart_addr
48  * that occur (potentially in generic code) before arm64_memblock_init()
49  * executes, which assigns it its actual value. So use a default value
50  * that cannot be mistaken for a real physical address.
51  */
52 s64 memstart_addr __ro_after_init = -1;
53 EXPORT_SYMBOL(memstart_addr);
54 
55 /*
56  * If the corresponding config options are enabled, we create both ZONE_DMA
57  * and ZONE_DMA32. By default ZONE_DMA covers the 32-bit addressable memory
58  * unless restricted on specific platforms (e.g. 30-bit on Raspberry Pi 4).
59  * In such case, ZONE_DMA32 covers the rest of the 32-bit addressable memory,
60  * otherwise it is empty.
61  */
62 phys_addr_t arm64_dma_phys_limit __ro_after_init;
63 
64 #ifdef CONFIG_KEXEC_CORE
65 /*
66  * reserve_crashkernel() - reserves memory for crash kernel
67  *
68  * This function reserves memory area given in "crashkernel=" kernel command
69  * line parameter. The memory reserved is used by dump capture kernel when
70  * primary kernel is crashing.
71  */
reserve_crashkernel(void)72 static void __init reserve_crashkernel(void)
73 {
74 	unsigned long long crash_base, crash_size;
75 	int ret;
76 
77 	ret = parse_crashkernel(boot_command_line, memblock_phys_mem_size(),
78 				&crash_size, &crash_base);
79 	/* no crashkernel= or invalid value specified */
80 	if (ret || !crash_size)
81 		return;
82 
83 	crash_size = PAGE_ALIGN(crash_size);
84 
85 	if (crash_base == 0) {
86 		/* Current arm64 boot protocol requires 2MB alignment */
87 		crash_base = memblock_find_in_range(0, arm64_dma_phys_limit,
88 				crash_size, SZ_2M);
89 		if (crash_base == 0) {
90 			pr_warn("cannot allocate crashkernel (size:0x%llx)\n",
91 				crash_size);
92 			return;
93 		}
94 	} else {
95 		/* User specifies base address explicitly. */
96 		if (!memblock_is_region_memory(crash_base, crash_size)) {
97 			pr_warn("cannot reserve crashkernel: region is not memory\n");
98 			return;
99 		}
100 
101 		if (memblock_is_region_reserved(crash_base, crash_size)) {
102 			pr_warn("cannot reserve crashkernel: region overlaps reserved memory\n");
103 			return;
104 		}
105 
106 		if (!IS_ALIGNED(crash_base, SZ_2M)) {
107 			pr_warn("cannot reserve crashkernel: base address is not 2MB aligned\n");
108 			return;
109 		}
110 	}
111 	memblock_reserve(crash_base, crash_size);
112 
113 	pr_info("crashkernel reserved: 0x%016llx - 0x%016llx (%lld MB)\n",
114 		crash_base, crash_base + crash_size, crash_size >> 20);
115 
116 	crashk_res.start = crash_base;
117 	crashk_res.end = crash_base + crash_size - 1;
118 }
119 #else
reserve_crashkernel(void)120 static void __init reserve_crashkernel(void)
121 {
122 }
123 #endif /* CONFIG_KEXEC_CORE */
124 
125 #ifdef CONFIG_CRASH_DUMP
early_init_dt_scan_elfcorehdr(unsigned long node,const char * uname,int depth,void * data)126 static int __init early_init_dt_scan_elfcorehdr(unsigned long node,
127 		const char *uname, int depth, void *data)
128 {
129 	const __be32 *reg;
130 	int len;
131 
132 	if (depth != 1 || strcmp(uname, "chosen") != 0)
133 		return 0;
134 
135 	reg = of_get_flat_dt_prop(node, "linux,elfcorehdr", &len);
136 	if (!reg || (len < (dt_root_addr_cells + dt_root_size_cells)))
137 		return 1;
138 
139 	elfcorehdr_addr = dt_mem_next_cell(dt_root_addr_cells, &reg);
140 	elfcorehdr_size = dt_mem_next_cell(dt_root_size_cells, &reg);
141 
142 	return 1;
143 }
144 
145 /*
146  * reserve_elfcorehdr() - reserves memory for elf core header
147  *
148  * This function reserves the memory occupied by an elf core header
149  * described in the device tree. This region contains all the
150  * information about primary kernel's core image and is used by a dump
151  * capture kernel to access the system memory on primary kernel.
152  */
reserve_elfcorehdr(void)153 static void __init reserve_elfcorehdr(void)
154 {
155 	of_scan_flat_dt(early_init_dt_scan_elfcorehdr, NULL);
156 
157 	if (!elfcorehdr_size)
158 		return;
159 
160 	if (memblock_is_region_reserved(elfcorehdr_addr, elfcorehdr_size)) {
161 		pr_warn("elfcorehdr is overlapped\n");
162 		return;
163 	}
164 
165 	memblock_reserve(elfcorehdr_addr, elfcorehdr_size);
166 
167 	pr_info("Reserving %lldKB of memory at 0x%llx for elfcorehdr\n",
168 		elfcorehdr_size >> 10, elfcorehdr_addr);
169 }
170 #else
reserve_elfcorehdr(void)171 static void __init reserve_elfcorehdr(void)
172 {
173 }
174 #endif /* CONFIG_CRASH_DUMP */
175 
176 /*
177  * Return the maximum physical address for a zone accessible by the given bits
178  * limit. If DRAM starts above 32-bit, expand the zone to the maximum
179  * available memory, otherwise cap it at 32-bit.
180  */
max_zone_phys(unsigned int zone_bits)181 static phys_addr_t __init max_zone_phys(unsigned int zone_bits)
182 {
183 	phys_addr_t zone_mask = DMA_BIT_MASK(zone_bits);
184 	phys_addr_t phys_start = memblock_start_of_DRAM();
185 
186 	if (phys_start > U32_MAX)
187 		zone_mask = PHYS_ADDR_MAX;
188 	else if (phys_start > zone_mask)
189 		zone_mask = U32_MAX;
190 
191 	return min(zone_mask, memblock_end_of_DRAM() - 1) + 1;
192 }
193 
zone_sizes_init(unsigned long min,unsigned long max)194 static void __init zone_sizes_init(unsigned long min, unsigned long max)
195 {
196 	unsigned long max_zone_pfns[MAX_NR_ZONES]  = {0};
197 	unsigned int __maybe_unused acpi_zone_dma_bits;
198 	unsigned int __maybe_unused dt_zone_dma_bits;
199 	phys_addr_t __maybe_unused dma32_phys_limit = max_zone_phys(32);
200 
201 #ifdef CONFIG_ZONE_DMA
202 	acpi_zone_dma_bits = fls64(acpi_iort_dma_get_max_cpu_address());
203 	dt_zone_dma_bits = fls64(of_dma_get_max_cpu_address(NULL));
204 	zone_dma_bits = min3(32U, dt_zone_dma_bits, acpi_zone_dma_bits);
205 	arm64_dma_phys_limit = max_zone_phys(zone_dma_bits);
206 	max_zone_pfns[ZONE_DMA] = PFN_DOWN(arm64_dma_phys_limit);
207 #endif
208 #ifdef CONFIG_ZONE_DMA32
209 	max_zone_pfns[ZONE_DMA32] = PFN_DOWN(dma32_phys_limit);
210 	if (!arm64_dma_phys_limit)
211 		arm64_dma_phys_limit = dma32_phys_limit;
212 #endif
213 	if (!arm64_dma_phys_limit)
214 		arm64_dma_phys_limit = PHYS_MASK + 1;
215 	max_zone_pfns[ZONE_NORMAL] = max;
216 
217 	free_area_init(max_zone_pfns);
218 }
219 
pfn_valid(unsigned long pfn)220 int pfn_valid(unsigned long pfn)
221 {
222 	phys_addr_t addr = pfn << PAGE_SHIFT;
223 
224 	if ((addr >> PAGE_SHIFT) != pfn)
225 		return 0;
226 
227 #ifdef CONFIG_SPARSEMEM
228 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
229 		return 0;
230 
231 	if (!valid_section(__pfn_to_section(pfn)))
232 		return 0;
233 
234 	/*
235 	 * ZONE_DEVICE memory does not have the memblock entries.
236 	 * memblock_is_map_memory() check for ZONE_DEVICE based
237 	 * addresses will always fail. Even the normal hotplugged
238 	 * memory will never have MEMBLOCK_NOMAP flag set in their
239 	 * memblock entries. Skip memblock search for all non early
240 	 * memory sections covering all of hotplug memory including
241 	 * both normal and ZONE_DEVICE based.
242 	 */
243 	if (!early_section(__pfn_to_section(pfn)))
244 		return pfn_section_valid(__pfn_to_section(pfn), pfn);
245 #endif
246 	return memblock_is_map_memory(addr);
247 }
248 EXPORT_SYMBOL(pfn_valid);
249 
250 static phys_addr_t memory_limit = PHYS_ADDR_MAX;
251 
252 /*
253  * Limit the memory size that was specified via FDT.
254  */
early_mem(char * p)255 static int __init early_mem(char *p)
256 {
257 	if (!p)
258 		return 1;
259 
260 	memory_limit = memparse(p, &p) & PAGE_MASK;
261 	pr_notice("Memory limited to %lldMB\n", memory_limit >> 20);
262 
263 	return 0;
264 }
265 early_param("mem", early_mem);
266 
early_init_dt_scan_usablemem(unsigned long node,const char * uname,int depth,void * data)267 static int __init early_init_dt_scan_usablemem(unsigned long node,
268 		const char *uname, int depth, void *data)
269 {
270 	struct memblock_region *usablemem = data;
271 	const __be32 *reg;
272 	int len;
273 
274 	if (depth != 1 || strcmp(uname, "chosen") != 0)
275 		return 0;
276 
277 	reg = of_get_flat_dt_prop(node, "linux,usable-memory-range", &len);
278 	if (!reg || (len < (dt_root_addr_cells + dt_root_size_cells)))
279 		return 1;
280 
281 	usablemem->base = dt_mem_next_cell(dt_root_addr_cells, &reg);
282 	usablemem->size = dt_mem_next_cell(dt_root_size_cells, &reg);
283 
284 	return 1;
285 }
286 
fdt_enforce_memory_region(void)287 static void __init fdt_enforce_memory_region(void)
288 {
289 	struct memblock_region reg = {
290 		.size = 0,
291 	};
292 
293 	of_scan_flat_dt(early_init_dt_scan_usablemem, &reg);
294 
295 	if (reg.size)
296 		memblock_cap_memory_range(reg.base, reg.size);
297 }
298 
arm64_memblock_init(void)299 void __init arm64_memblock_init(void)
300 {
301 	const s64 linear_region_size = BIT(vabits_actual - 1);
302 
303 	/* Handle linux,usable-memory-range property */
304 	fdt_enforce_memory_region();
305 
306 	/* Remove memory above our supported physical address size */
307 	memblock_remove(1ULL << PHYS_MASK_SHIFT, ULLONG_MAX);
308 
309 	/*
310 	 * Select a suitable value for the base of physical memory.
311 	 */
312 	memstart_addr = round_down(memblock_start_of_DRAM(),
313 				   ARM64_MEMSTART_ALIGN);
314 
315 	/*
316 	 * Remove the memory that we will not be able to cover with the
317 	 * linear mapping. Take care not to clip the kernel which may be
318 	 * high in memory.
319 	 */
320 	memblock_remove(max_t(u64, memstart_addr + linear_region_size,
321 			__pa_symbol(_end)), ULLONG_MAX);
322 	if (memstart_addr + linear_region_size < memblock_end_of_DRAM()) {
323 		/* ensure that memstart_addr remains sufficiently aligned */
324 		memstart_addr = round_up(memblock_end_of_DRAM() - linear_region_size,
325 					 ARM64_MEMSTART_ALIGN);
326 		memblock_remove(0, memstart_addr);
327 	}
328 
329 	/*
330 	 * If we are running with a 52-bit kernel VA config on a system that
331 	 * does not support it, we have to place the available physical
332 	 * memory in the 48-bit addressable part of the linear region, i.e.,
333 	 * we have to move it upward. Since memstart_addr represents the
334 	 * physical address of PAGE_OFFSET, we have to *subtract* from it.
335 	 */
336 	if (IS_ENABLED(CONFIG_ARM64_VA_BITS_52) && (vabits_actual != 52))
337 		memstart_addr -= _PAGE_OFFSET(48) - _PAGE_OFFSET(52);
338 
339 	/*
340 	 * Apply the memory limit if it was set. Since the kernel may be loaded
341 	 * high up in memory, add back the kernel region that must be accessible
342 	 * via the linear mapping.
343 	 */
344 	if (memory_limit != PHYS_ADDR_MAX) {
345 		memblock_mem_limit_remove_map(memory_limit);
346 		memblock_add(__pa_symbol(_text), (u64)(_end - _text));
347 	}
348 
349 	if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) && phys_initrd_size) {
350 		/*
351 		 * Add back the memory we just removed if it results in the
352 		 * initrd to become inaccessible via the linear mapping.
353 		 * Otherwise, this is a no-op
354 		 */
355 		u64 base = phys_initrd_start & PAGE_MASK;
356 		u64 size = PAGE_ALIGN(phys_initrd_start + phys_initrd_size) - base;
357 
358 		/*
359 		 * We can only add back the initrd memory if we don't end up
360 		 * with more memory than we can address via the linear mapping.
361 		 * It is up to the bootloader to position the kernel and the
362 		 * initrd reasonably close to each other (i.e., within 32 GB of
363 		 * each other) so that all granule/#levels combinations can
364 		 * always access both.
365 		 */
366 		if (WARN(base < memblock_start_of_DRAM() ||
367 			 base + size > memblock_start_of_DRAM() +
368 				       linear_region_size,
369 			"initrd not fully accessible via the linear mapping -- please check your bootloader ...\n")) {
370 			phys_initrd_size = 0;
371 		} else {
372 			memblock_remove(base, size); /* clear MEMBLOCK_ flags */
373 			memblock_add(base, size);
374 			memblock_reserve(base, size);
375 		}
376 	}
377 
378 	if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) {
379 		extern u16 memstart_offset_seed;
380 		u64 range = linear_region_size -
381 			    (memblock_end_of_DRAM() - memblock_start_of_DRAM());
382 
383 		/*
384 		 * If the size of the linear region exceeds, by a sufficient
385 		 * margin, the size of the region that the available physical
386 		 * memory spans, randomize the linear region as well.
387 		 */
388 		if (memstart_offset_seed > 0 && range >= ARM64_MEMSTART_ALIGN) {
389 			range /= ARM64_MEMSTART_ALIGN;
390 			memstart_addr -= ARM64_MEMSTART_ALIGN *
391 					 ((range * memstart_offset_seed) >> 16);
392 		}
393 	}
394 
395 	/*
396 	 * Register the kernel text, kernel data, initrd, and initial
397 	 * pagetables with memblock.
398 	 */
399 	memblock_reserve(__pa_symbol(_text), _end - _text);
400 	if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) && phys_initrd_size) {
401 		/* the generic initrd code expects virtual addresses */
402 		initrd_start = __phys_to_virt(phys_initrd_start);
403 		initrd_end = initrd_start + phys_initrd_size;
404 	}
405 
406 	early_init_fdt_scan_reserved_mem();
407 
408 	reserve_elfcorehdr();
409 
410 	high_memory = __va(memblock_end_of_DRAM() - 1) + 1;
411 }
412 
bootmem_init(void)413 void __init bootmem_init(void)
414 {
415 	unsigned long min, max;
416 
417 	min = PFN_UP(memblock_start_of_DRAM());
418 	max = PFN_DOWN(memblock_end_of_DRAM());
419 
420 	early_memtest(min << PAGE_SHIFT, max << PAGE_SHIFT);
421 
422 	max_pfn = max_low_pfn = max;
423 	min_low_pfn = min;
424 
425 	arm64_numa_init();
426 
427 	/*
428 	 * must be done after arm64_numa_init() which calls numa_init() to
429 	 * initialize node_online_map that gets used in hugetlb_cma_reserve()
430 	 * while allocating required CMA size across online nodes.
431 	 */
432 #if defined(CONFIG_HUGETLB_PAGE) && defined(CONFIG_CMA)
433 	arm64_hugetlb_cma_reserve();
434 #endif
435 
436 	dma_pernuma_cma_reserve();
437 
438 	/*
439 	 * sparse_init() tries to allocate memory from memblock, so must be
440 	 * done after the fixed reservations
441 	 */
442 	sparse_init();
443 	zone_sizes_init(min, max);
444 
445 	/*
446 	 * Reserve the CMA area after arm64_dma_phys_limit was initialised.
447 	 */
448 	dma_contiguous_reserve(arm64_dma_phys_limit);
449 
450 	/*
451 	 * request_standard_resources() depends on crashkernel's memory being
452 	 * reserved, so do it here.
453 	 */
454 	reserve_crashkernel();
455 
456 	memblock_dump_all();
457 }
458 
459 #ifndef CONFIG_SPARSEMEM_VMEMMAP
free_memmap(unsigned long start_pfn,unsigned long end_pfn)460 static inline void free_memmap(unsigned long start_pfn, unsigned long end_pfn)
461 {
462 	struct page *start_pg, *end_pg;
463 	unsigned long pg, pgend;
464 
465 	/*
466 	 * Convert start_pfn/end_pfn to a struct page pointer.
467 	 */
468 	start_pg = pfn_to_page(start_pfn - 1) + 1;
469 	end_pg = pfn_to_page(end_pfn - 1) + 1;
470 
471 	/*
472 	 * Convert to physical addresses, and round start upwards and end
473 	 * downwards.
474 	 */
475 	pg = (unsigned long)PAGE_ALIGN(__pa(start_pg));
476 	pgend = (unsigned long)__pa(end_pg) & PAGE_MASK;
477 
478 	/*
479 	 * If there are free pages between these, free the section of the
480 	 * memmap array.
481 	 */
482 	if (pg < pgend)
483 		memblock_free(pg, pgend - pg);
484 }
485 
486 /*
487  * The mem_map array can get very big. Free the unused area of the memory map.
488  */
free_unused_memmap(void)489 static void __init free_unused_memmap(void)
490 {
491 	unsigned long start, end, prev_end = 0;
492 	int i;
493 
494 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, NULL) {
495 #ifdef CONFIG_SPARSEMEM
496 		/*
497 		 * Take care not to free memmap entries that don't exist due
498 		 * to SPARSEMEM sections which aren't present.
499 		 */
500 		start = min(start, ALIGN(prev_end, PAGES_PER_SECTION));
501 #endif
502 		/*
503 		 * If we had a previous bank, and there is a space between the
504 		 * current bank and the previous, free it.
505 		 */
506 		if (prev_end && prev_end < start)
507 			free_memmap(prev_end, start);
508 
509 		/*
510 		 * Align up here since the VM subsystem insists that the
511 		 * memmap entries are valid from the bank end aligned to
512 		 * MAX_ORDER_NR_PAGES.
513 		 */
514 		prev_end = ALIGN(end, MAX_ORDER_NR_PAGES);
515 	}
516 
517 #ifdef CONFIG_SPARSEMEM
518 	if (!IS_ALIGNED(prev_end, PAGES_PER_SECTION))
519 		free_memmap(prev_end, ALIGN(prev_end, PAGES_PER_SECTION));
520 #endif
521 }
522 #endif	/* !CONFIG_SPARSEMEM_VMEMMAP */
523 
524 /*
525  * mem_init() marks the free areas in the mem_map and tells us how much memory
526  * is free.  This is done after various parts of the system have claimed their
527  * memory after the kernel image.
528  */
mem_init(void)529 void __init mem_init(void)
530 {
531 	if (swiotlb_force == SWIOTLB_FORCE ||
532 	    max_pfn > PFN_DOWN(arm64_dma_phys_limit))
533 		swiotlb_init(1);
534 	else
535 		swiotlb_force = SWIOTLB_NO_FORCE;
536 
537 	set_max_mapnr(max_pfn - PHYS_PFN_OFFSET);
538 
539 #ifndef CONFIG_SPARSEMEM_VMEMMAP
540 	free_unused_memmap();
541 #endif
542 	/* this will put all unused low memory onto the freelists */
543 	memblock_free_all();
544 
545 	mem_init_print_info(NULL);
546 
547 	/*
548 	 * Check boundaries twice: Some fundamental inconsistencies can be
549 	 * detected at build time already.
550 	 */
551 #ifdef CONFIG_COMPAT
552 	BUILD_BUG_ON(TASK_SIZE_32 > DEFAULT_MAP_WINDOW_64);
553 #endif
554 
555 	if (PAGE_SIZE >= 16384 && get_num_physpages() <= 128) {
556 		extern int sysctl_overcommit_memory;
557 		/*
558 		 * On a machine this small we won't get anywhere without
559 		 * overcommit, so turn it on by default.
560 		 */
561 		sysctl_overcommit_memory = OVERCOMMIT_ALWAYS;
562 	}
563 }
564 
free_initmem(void)565 void free_initmem(void)
566 {
567 	free_reserved_area(lm_alias(__init_begin),
568 			   lm_alias(__init_end),
569 			   POISON_FREE_INITMEM, "unused kernel");
570 	/*
571 	 * Unmap the __init region but leave the VM area in place. This
572 	 * prevents the region from being reused for kernel modules, which
573 	 * is not supported by kallsyms.
574 	 */
575 	unmap_kernel_range((u64)__init_begin, (u64)(__init_end - __init_begin));
576 }
577 
dump_mem_limit(void)578 void dump_mem_limit(void)
579 {
580 	if (memory_limit != PHYS_ADDR_MAX) {
581 		pr_emerg("Memory Limit: %llu MB\n", memory_limit >> 20);
582 	} else {
583 		pr_emerg("Memory Limit: none\n");
584 	}
585 }
586