1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * Copyright (C) 2008-2009 Michal Simek <monstr@monstr.eu>
4 * Copyright (C) 2008-2009 PetaLogix
5 * Copyright (C) 2006 Atmark Techno, Inc.
6 */
7
8 #ifndef _ASM_MICROBLAZE_PGTABLE_H
9 #define _ASM_MICROBLAZE_PGTABLE_H
10
11 #include <asm/setup.h>
12
13 #ifndef __ASSEMBLY__
14 extern int mem_init_done;
15 #endif
16
17 #ifndef CONFIG_MMU
18
19 #define pgd_present(pgd) (1) /* pages are always present on non MMU */
20 #define pgd_none(pgd) (0)
21 #define pgd_bad(pgd) (0)
22 #define pgd_clear(pgdp)
23 #define kern_addr_valid(addr) (1)
24
25 #define PAGE_NONE __pgprot(0) /* these mean nothing to non MMU */
26 #define PAGE_SHARED __pgprot(0) /* these mean nothing to non MMU */
27 #define PAGE_COPY __pgprot(0) /* these mean nothing to non MMU */
28 #define PAGE_READONLY __pgprot(0) /* these mean nothing to non MMU */
29 #define PAGE_KERNEL __pgprot(0) /* these mean nothing to non MMU */
30
31 #define pgprot_noncached(x) (x)
32 #define pgprot_writecombine pgprot_noncached
33 #define pgprot_device pgprot_noncached
34
35 #define __swp_type(x) (0)
36 #define __swp_offset(x) (0)
37 #define __swp_entry(typ, off) ((swp_entry_t) { ((typ) | ((off) << 7)) })
38 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
39 #define __swp_entry_to_pte(x) ((pte_t) { (x).val })
40
41 #define ZERO_PAGE(vaddr) ({ BUG(); NULL; })
42
43 #define swapper_pg_dir ((pgd_t *) NULL)
44
45 #define arch_enter_lazy_cpu_mode() do {} while (0)
46
47 #define pgprot_noncached_wc(prot) prot
48
49 /*
50 * All 32bit addresses are effectively valid for vmalloc...
51 * Sort of meaningless for non-VM targets.
52 */
53 #define VMALLOC_START 0
54 #define VMALLOC_END 0xffffffff
55
56 #else /* CONFIG_MMU */
57
58 #include <asm-generic/pgtable-nopmd.h>
59
60 #ifdef __KERNEL__
61 #ifndef __ASSEMBLY__
62
63 #include <linux/sched.h>
64 #include <linux/threads.h>
65 #include <asm/processor.h> /* For TASK_SIZE */
66 #include <asm/mmu.h>
67 #include <asm/page.h>
68
69 #define FIRST_USER_ADDRESS 0UL
70
71 extern unsigned long va_to_phys(unsigned long address);
72 extern pte_t *va_to_pte(unsigned long address);
73
74 /*
75 * The following only work if pte_present() is true.
76 * Undefined behaviour if not..
77 */
78
79 /* Start and end of the vmalloc area. */
80 /* Make sure to map the vmalloc area above the pinned kernel memory area
81 of 32Mb. */
82 #define VMALLOC_START (CONFIG_KERNEL_START + CONFIG_LOWMEM_SIZE)
83 #define VMALLOC_END ioremap_bot
84
85 #endif /* __ASSEMBLY__ */
86
87 /*
88 * Macro to mark a page protection value as "uncacheable".
89 */
90
91 #define _PAGE_CACHE_CTL (_PAGE_GUARDED | _PAGE_NO_CACHE | \
92 _PAGE_WRITETHRU)
93
94 #define pgprot_noncached(prot) \
95 (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \
96 _PAGE_NO_CACHE | _PAGE_GUARDED))
97
98 #define pgprot_noncached_wc(prot) \
99 (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \
100 _PAGE_NO_CACHE))
101
102 /*
103 * The MicroBlaze MMU is identical to the PPC-40x MMU, and uses a hash
104 * table containing PTEs, together with a set of 16 segment registers, to
105 * define the virtual to physical address mapping.
106 *
107 * We use the hash table as an extended TLB, i.e. a cache of currently
108 * active mappings. We maintain a two-level page table tree, much
109 * like that used by the i386, for the sake of the Linux memory
110 * management code. Low-level assembler code in hashtable.S
111 * (procedure hash_page) is responsible for extracting ptes from the
112 * tree and putting them into the hash table when necessary, and
113 * updating the accessed and modified bits in the page table tree.
114 */
115
116 /*
117 * The MicroBlaze processor has a TLB architecture identical to PPC-40x. The
118 * instruction and data sides share a unified, 64-entry, semi-associative
119 * TLB which is maintained totally under software control. In addition, the
120 * instruction side has a hardware-managed, 2,4, or 8-entry, fully-associative
121 * TLB which serves as a first level to the shared TLB. These two TLBs are
122 * known as the UTLB and ITLB, respectively (see "mmu.h" for definitions).
123 */
124
125 /*
126 * The normal case is that PTEs are 32-bits and we have a 1-page
127 * 1024-entry pgdir pointing to 1-page 1024-entry PTE pages. -- paulus
128 *
129 */
130
131 /* PGDIR_SHIFT determines what a top-level page table entry can map */
132 #define PGDIR_SHIFT (PAGE_SHIFT + PTE_SHIFT)
133 #define PGDIR_SIZE (1UL << PGDIR_SHIFT)
134 #define PGDIR_MASK (~(PGDIR_SIZE-1))
135
136 /*
137 * entries per page directory level: our page-table tree is two-level, so
138 * we don't really have any PMD directory.
139 */
140 #define PTRS_PER_PTE (1 << PTE_SHIFT)
141 #define PTRS_PER_PMD 1
142 #define PTRS_PER_PGD (1 << (32 - PGDIR_SHIFT))
143
144 #define USER_PTRS_PER_PGD (TASK_SIZE / PGDIR_SIZE)
145 #define FIRST_USER_PGD_NR 0
146
147 #define USER_PGD_PTRS (PAGE_OFFSET >> PGDIR_SHIFT)
148 #define KERNEL_PGD_PTRS (PTRS_PER_PGD-USER_PGD_PTRS)
149
150 #define pte_ERROR(e) \
151 printk(KERN_ERR "%s:%d: bad pte "PTE_FMT".\n", \
152 __FILE__, __LINE__, pte_val(e))
153 #define pgd_ERROR(e) \
154 printk(KERN_ERR "%s:%d: bad pgd %08lx.\n", \
155 __FILE__, __LINE__, pgd_val(e))
156
157 /*
158 * Bits in a linux-style PTE. These match the bits in the
159 * (hardware-defined) PTE as closely as possible.
160 */
161
162 /* There are several potential gotchas here. The hardware TLBLO
163 * field looks like this:
164 *
165 * 0 1 2 3 4 ... 18 19 20 21 22 23 24 25 26 27 28 29 30 31
166 * RPN..................... 0 0 EX WR ZSEL....... W I M G
167 *
168 * Where possible we make the Linux PTE bits match up with this
169 *
170 * - bits 20 and 21 must be cleared, because we use 4k pages (4xx can
171 * support down to 1k pages), this is done in the TLBMiss exception
172 * handler.
173 * - We use only zones 0 (for kernel pages) and 1 (for user pages)
174 * of the 16 available. Bit 24-26 of the TLB are cleared in the TLB
175 * miss handler. Bit 27 is PAGE_USER, thus selecting the correct
176 * zone.
177 * - PRESENT *must* be in the bottom two bits because swap cache
178 * entries use the top 30 bits. Because 4xx doesn't support SMP
179 * anyway, M is irrelevant so we borrow it for PAGE_PRESENT. Bit 30
180 * is cleared in the TLB miss handler before the TLB entry is loaded.
181 * - All other bits of the PTE are loaded into TLBLO without
182 * * modification, leaving us only the bits 20, 21, 24, 25, 26, 30 for
183 * software PTE bits. We actually use bits 21, 24, 25, and
184 * 30 respectively for the software bits: ACCESSED, DIRTY, RW, and
185 * PRESENT.
186 */
187
188 /* Definitions for MicroBlaze. */
189 #define _PAGE_GUARDED 0x001 /* G: page is guarded from prefetch */
190 #define _PAGE_PRESENT 0x002 /* software: PTE contains a translation */
191 #define _PAGE_NO_CACHE 0x004 /* I: caching is inhibited */
192 #define _PAGE_WRITETHRU 0x008 /* W: caching is write-through */
193 #define _PAGE_USER 0x010 /* matches one of the zone permission bits */
194 #define _PAGE_RW 0x040 /* software: Writes permitted */
195 #define _PAGE_DIRTY 0x080 /* software: dirty page */
196 #define _PAGE_HWWRITE 0x100 /* hardware: Dirty & RW, set in exception */
197 #define _PAGE_HWEXEC 0x200 /* hardware: EX permission */
198 #define _PAGE_ACCESSED 0x400 /* software: R: page referenced */
199 #define _PMD_PRESENT PAGE_MASK
200
201 /*
202 * Some bits are unused...
203 */
204 #ifndef _PAGE_HASHPTE
205 #define _PAGE_HASHPTE 0
206 #endif
207 #ifndef _PTE_NONE_MASK
208 #define _PTE_NONE_MASK 0
209 #endif
210 #ifndef _PAGE_SHARED
211 #define _PAGE_SHARED 0
212 #endif
213 #ifndef _PAGE_EXEC
214 #define _PAGE_EXEC 0
215 #endif
216
217 #define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
218
219 /*
220 * Note: the _PAGE_COHERENT bit automatically gets set in the hardware
221 * PTE if CONFIG_SMP is defined (hash_page does this); there is no need
222 * to have it in the Linux PTE, and in fact the bit could be reused for
223 * another purpose. -- paulus.
224 */
225 #define _PAGE_BASE (_PAGE_PRESENT | _PAGE_ACCESSED)
226 #define _PAGE_WRENABLE (_PAGE_RW | _PAGE_DIRTY | _PAGE_HWWRITE)
227
228 #define _PAGE_KERNEL \
229 (_PAGE_BASE | _PAGE_WRENABLE | _PAGE_SHARED | _PAGE_HWEXEC)
230
231 #define _PAGE_IO (_PAGE_KERNEL | _PAGE_NO_CACHE | _PAGE_GUARDED)
232
233 #define PAGE_NONE __pgprot(_PAGE_BASE)
234 #define PAGE_READONLY __pgprot(_PAGE_BASE | _PAGE_USER)
235 #define PAGE_READONLY_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC)
236 #define PAGE_SHARED __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_RW)
237 #define PAGE_SHARED_X \
238 __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_RW | _PAGE_EXEC)
239 #define PAGE_COPY __pgprot(_PAGE_BASE | _PAGE_USER)
240 #define PAGE_COPY_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC)
241
242 #define PAGE_KERNEL __pgprot(_PAGE_KERNEL)
243 #define PAGE_KERNEL_RO __pgprot(_PAGE_BASE | _PAGE_SHARED)
244 #define PAGE_KERNEL_CI __pgprot(_PAGE_IO)
245
246 /*
247 * We consider execute permission the same as read.
248 * Also, write permissions imply read permissions.
249 */
250 #define __P000 PAGE_NONE
251 #define __P001 PAGE_READONLY_X
252 #define __P010 PAGE_COPY
253 #define __P011 PAGE_COPY_X
254 #define __P100 PAGE_READONLY
255 #define __P101 PAGE_READONLY_X
256 #define __P110 PAGE_COPY
257 #define __P111 PAGE_COPY_X
258
259 #define __S000 PAGE_NONE
260 #define __S001 PAGE_READONLY_X
261 #define __S010 PAGE_SHARED
262 #define __S011 PAGE_SHARED_X
263 #define __S100 PAGE_READONLY
264 #define __S101 PAGE_READONLY_X
265 #define __S110 PAGE_SHARED
266 #define __S111 PAGE_SHARED_X
267
268 #ifndef __ASSEMBLY__
269 /*
270 * ZERO_PAGE is a global shared page that is always zero: used
271 * for zero-mapped memory areas etc..
272 */
273 extern unsigned long empty_zero_page[1024];
274 #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
275
276 #endif /* __ASSEMBLY__ */
277
278 #define pte_none(pte) ((pte_val(pte) & ~_PTE_NONE_MASK) == 0)
279 #define pte_present(pte) (pte_val(pte) & _PAGE_PRESENT)
280 #define pte_clear(mm, addr, ptep) \
281 do { set_pte_at((mm), (addr), (ptep), __pte(0)); } while (0)
282
283 #define pmd_none(pmd) (!pmd_val(pmd))
284 #define pmd_bad(pmd) ((pmd_val(pmd) & _PMD_PRESENT) == 0)
285 #define pmd_present(pmd) ((pmd_val(pmd) & _PMD_PRESENT) != 0)
286 #define pmd_clear(pmdp) do { pmd_val(*(pmdp)) = 0; } while (0)
287
288 #define pte_page(x) (mem_map + (unsigned long) \
289 ((pte_val(x) - memory_start) >> PAGE_SHIFT))
290 #define PFN_SHIFT_OFFSET (PAGE_SHIFT)
291
292 #define pte_pfn(x) (pte_val(x) >> PFN_SHIFT_OFFSET)
293
294 #define pfn_pte(pfn, prot) \
295 __pte(((pte_basic_t)(pfn) << PFN_SHIFT_OFFSET) | pgprot_val(prot))
296
297 #ifndef __ASSEMBLY__
298 /*
299 * The following only work if pte_present() is true.
300 * Undefined behaviour if not..
301 */
pte_read(pte_t pte)302 static inline int pte_read(pte_t pte) { return pte_val(pte) & _PAGE_USER; }
pte_write(pte_t pte)303 static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_RW; }
pte_exec(pte_t pte)304 static inline int pte_exec(pte_t pte) { return pte_val(pte) & _PAGE_EXEC; }
pte_dirty(pte_t pte)305 static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; }
pte_young(pte_t pte)306 static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; }
307
pte_uncache(pte_t pte)308 static inline void pte_uncache(pte_t pte) { pte_val(pte) |= _PAGE_NO_CACHE; }
pte_cache(pte_t pte)309 static inline void pte_cache(pte_t pte) { pte_val(pte) &= ~_PAGE_NO_CACHE; }
310
pte_rdprotect(pte_t pte)311 static inline pte_t pte_rdprotect(pte_t pte) \
312 { pte_val(pte) &= ~_PAGE_USER; return pte; }
pte_wrprotect(pte_t pte)313 static inline pte_t pte_wrprotect(pte_t pte) \
314 { pte_val(pte) &= ~(_PAGE_RW | _PAGE_HWWRITE); return pte; }
pte_exprotect(pte_t pte)315 static inline pte_t pte_exprotect(pte_t pte) \
316 { pte_val(pte) &= ~_PAGE_EXEC; return pte; }
pte_mkclean(pte_t pte)317 static inline pte_t pte_mkclean(pte_t pte) \
318 { pte_val(pte) &= ~(_PAGE_DIRTY | _PAGE_HWWRITE); return pte; }
pte_mkold(pte_t pte)319 static inline pte_t pte_mkold(pte_t pte) \
320 { pte_val(pte) &= ~_PAGE_ACCESSED; return pte; }
321
pte_mkread(pte_t pte)322 static inline pte_t pte_mkread(pte_t pte) \
323 { pte_val(pte) |= _PAGE_USER; return pte; }
pte_mkexec(pte_t pte)324 static inline pte_t pte_mkexec(pte_t pte) \
325 { pte_val(pte) |= _PAGE_USER | _PAGE_EXEC; return pte; }
pte_mkwrite(pte_t pte)326 static inline pte_t pte_mkwrite(pte_t pte) \
327 { pte_val(pte) |= _PAGE_RW; return pte; }
pte_mkdirty(pte_t pte)328 static inline pte_t pte_mkdirty(pte_t pte) \
329 { pte_val(pte) |= _PAGE_DIRTY; return pte; }
pte_mkyoung(pte_t pte)330 static inline pte_t pte_mkyoung(pte_t pte) \
331 { pte_val(pte) |= _PAGE_ACCESSED; return pte; }
332
333 /*
334 * Conversion functions: convert a page and protection to a page entry,
335 * and a page entry and page directory to the page they refer to.
336 */
337
mk_pte_phys(phys_addr_t physpage,pgprot_t pgprot)338 static inline pte_t mk_pte_phys(phys_addr_t physpage, pgprot_t pgprot)
339 {
340 pte_t pte;
341 pte_val(pte) = physpage | pgprot_val(pgprot);
342 return pte;
343 }
344
345 #define mk_pte(page, pgprot) \
346 ({ \
347 pte_t pte; \
348 pte_val(pte) = (((page - mem_map) << PAGE_SHIFT) + memory_start) | \
349 pgprot_val(pgprot); \
350 pte; \
351 })
352
pte_modify(pte_t pte,pgprot_t newprot)353 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
354 {
355 pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot);
356 return pte;
357 }
358
359 /*
360 * Atomic PTE updates.
361 *
362 * pte_update clears and sets bit atomically, and returns
363 * the old pte value.
364 * The ((unsigned long)(p+1) - 4) hack is to get to the least-significant
365 * 32 bits of the PTE regardless of whether PTEs are 32 or 64 bits.
366 */
pte_update(pte_t * p,unsigned long clr,unsigned long set)367 static inline unsigned long pte_update(pte_t *p, unsigned long clr,
368 unsigned long set)
369 {
370 unsigned long flags, old, tmp;
371
372 raw_local_irq_save(flags);
373
374 __asm__ __volatile__( "lw %0, %2, r0 \n"
375 "andn %1, %0, %3 \n"
376 "or %1, %1, %4 \n"
377 "sw %1, %2, r0 \n"
378 : "=&r" (old), "=&r" (tmp)
379 : "r" ((unsigned long)(p + 1) - 4), "r" (clr), "r" (set)
380 : "cc");
381
382 raw_local_irq_restore(flags);
383
384 return old;
385 }
386
387 /*
388 * set_pte stores a linux PTE into the linux page table.
389 */
set_pte(struct mm_struct * mm,unsigned long addr,pte_t * ptep,pte_t pte)390 static inline void set_pte(struct mm_struct *mm, unsigned long addr,
391 pte_t *ptep, pte_t pte)
392 {
393 *ptep = pte;
394 }
395
set_pte_at(struct mm_struct * mm,unsigned long addr,pte_t * ptep,pte_t pte)396 static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
397 pte_t *ptep, pte_t pte)
398 {
399 *ptep = pte;
400 }
401
402 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
ptep_test_and_clear_young(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)403 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
404 unsigned long address, pte_t *ptep)
405 {
406 return (pte_update(ptep, _PAGE_ACCESSED, 0) & _PAGE_ACCESSED) != 0;
407 }
408
ptep_test_and_clear_dirty(struct mm_struct * mm,unsigned long addr,pte_t * ptep)409 static inline int ptep_test_and_clear_dirty(struct mm_struct *mm,
410 unsigned long addr, pte_t *ptep)
411 {
412 return (pte_update(ptep, \
413 (_PAGE_DIRTY | _PAGE_HWWRITE), 0) & _PAGE_DIRTY) != 0;
414 }
415
416 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
ptep_get_and_clear(struct mm_struct * mm,unsigned long addr,pte_t * ptep)417 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
418 unsigned long addr, pte_t *ptep)
419 {
420 return __pte(pte_update(ptep, ~_PAGE_HASHPTE, 0));
421 }
422
423 /*static inline void ptep_set_wrprotect(struct mm_struct *mm,
424 unsigned long addr, pte_t *ptep)
425 {
426 pte_update(ptep, (_PAGE_RW | _PAGE_HWWRITE), 0);
427 }*/
428
ptep_mkdirty(struct mm_struct * mm,unsigned long addr,pte_t * ptep)429 static inline void ptep_mkdirty(struct mm_struct *mm,
430 unsigned long addr, pte_t *ptep)
431 {
432 pte_update(ptep, 0, _PAGE_DIRTY);
433 }
434
435 /*#define pte_same(A,B) (((pte_val(A) ^ pte_val(B)) & ~_PAGE_HASHPTE) == 0)*/
436
437 /* Convert pmd entry to page */
438 /* our pmd entry is an effective address of pte table*/
439 /* returns effective address of the pmd entry*/
pmd_page_vaddr(pmd_t pmd)440 static inline unsigned long pmd_page_vaddr(pmd_t pmd)
441 {
442 return ((unsigned long) (pmd_val(pmd) & PAGE_MASK));
443 }
444
445 /* returns struct *page of the pmd entry*/
446 #define pmd_page(pmd) (pfn_to_page(__pa(pmd_val(pmd)) >> PAGE_SHIFT))
447
448 /* Find an entry in the third-level page table.. */
449
450 extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
451
452 /*
453 * Encode and decode a swap entry.
454 * Note that the bits we use in a PTE for representing a swap entry
455 * must not include the _PAGE_PRESENT bit, or the _PAGE_HASHPTE bit
456 * (if used). -- paulus
457 */
458 #define __swp_type(entry) ((entry).val & 0x3f)
459 #define __swp_offset(entry) ((entry).val >> 6)
460 #define __swp_entry(type, offset) \
461 ((swp_entry_t) { (type) | ((offset) << 6) })
462 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) >> 2 })
463 #define __swp_entry_to_pte(x) ((pte_t) { (x).val << 2 })
464
465 extern unsigned long iopa(unsigned long addr);
466
467 /* Values for nocacheflag and cmode */
468 /* These are not used by the APUS kernel_map, but prevents
469 * compilation errors.
470 */
471 #define IOMAP_FULL_CACHING 0
472 #define IOMAP_NOCACHE_SER 1
473 #define IOMAP_NOCACHE_NONSER 2
474 #define IOMAP_NO_COPYBACK 3
475
476 /* Needs to be defined here and not in linux/mm.h, as it is arch dependent */
477 #define kern_addr_valid(addr) (1)
478
479 void do_page_fault(struct pt_regs *regs, unsigned long address,
480 unsigned long error_code);
481
482 void mapin_ram(void);
483 int map_page(unsigned long va, phys_addr_t pa, int flags);
484
485 extern int mem_init_done;
486
487 asmlinkage void __init mmu_init(void);
488
489 void __init *early_get_page(void);
490
491 #endif /* __ASSEMBLY__ */
492 #endif /* __KERNEL__ */
493
494 #endif /* CONFIG_MMU */
495
496 #ifndef __ASSEMBLY__
497 extern unsigned long ioremap_bot, ioremap_base;
498
499 void setup_memory(void);
500 #endif /* __ASSEMBLY__ */
501
502 #endif /* _ASM_MICROBLAZE_PGTABLE_H */
503