1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * PowerPC version
4 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
5 *
6 * Derived from "arch/i386/mm/fault.c"
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 *
9 * Modified by Cort Dougan and Paul Mackerras.
10 *
11 * Modified for PPC64 by Dave Engebretsen (engebret@ibm.com)
12 */
13
14 #include <linux/signal.h>
15 #include <linux/sched.h>
16 #include <linux/sched/task_stack.h>
17 #include <linux/kernel.h>
18 #include <linux/errno.h>
19 #include <linux/string.h>
20 #include <linux/types.h>
21 #include <linux/pagemap.h>
22 #include <linux/ptrace.h>
23 #include <linux/mman.h>
24 #include <linux/mm.h>
25 #include <linux/interrupt.h>
26 #include <linux/highmem.h>
27 #include <linux/extable.h>
28 #include <linux/kprobes.h>
29 #include <linux/kdebug.h>
30 #include <linux/perf_event.h>
31 #include <linux/ratelimit.h>
32 #include <linux/context_tracking.h>
33 #include <linux/hugetlb.h>
34 #include <linux/uaccess.h>
35
36 #include <asm/firmware.h>
37 #include <asm/page.h>
38 #include <asm/mmu.h>
39 #include <asm/mmu_context.h>
40 #include <asm/siginfo.h>
41 #include <asm/debug.h>
42 #include <asm/kup.h>
43 #include <asm/inst.h>
44
45
46 /*
47 * do_page_fault error handling helpers
48 */
49
50 static int
__bad_area_nosemaphore(struct pt_regs * regs,unsigned long address,int si_code)51 __bad_area_nosemaphore(struct pt_regs *regs, unsigned long address, int si_code)
52 {
53 /*
54 * If we are in kernel mode, bail out with a SEGV, this will
55 * be caught by the assembly which will restore the non-volatile
56 * registers before calling bad_page_fault()
57 */
58 if (!user_mode(regs))
59 return SIGSEGV;
60
61 _exception(SIGSEGV, regs, si_code, address);
62
63 return 0;
64 }
65
bad_area_nosemaphore(struct pt_regs * regs,unsigned long address)66 static noinline int bad_area_nosemaphore(struct pt_regs *regs, unsigned long address)
67 {
68 return __bad_area_nosemaphore(regs, address, SEGV_MAPERR);
69 }
70
__bad_area(struct pt_regs * regs,unsigned long address,int si_code)71 static int __bad_area(struct pt_regs *regs, unsigned long address, int si_code)
72 {
73 struct mm_struct *mm = current->mm;
74
75 /*
76 * Something tried to access memory that isn't in our memory map..
77 * Fix it, but check if it's kernel or user first..
78 */
79 mmap_read_unlock(mm);
80
81 return __bad_area_nosemaphore(regs, address, si_code);
82 }
83
bad_area(struct pt_regs * regs,unsigned long address)84 static noinline int bad_area(struct pt_regs *regs, unsigned long address)
85 {
86 return __bad_area(regs, address, SEGV_MAPERR);
87 }
88
89 #ifdef CONFIG_PPC_MEM_KEYS
bad_access_pkey(struct pt_regs * regs,unsigned long address,struct vm_area_struct * vma)90 static noinline int bad_access_pkey(struct pt_regs *regs, unsigned long address,
91 struct vm_area_struct *vma)
92 {
93 struct mm_struct *mm = current->mm;
94 int pkey;
95
96 /*
97 * We don't try to fetch the pkey from page table because reading
98 * page table without locking doesn't guarantee stable pte value.
99 * Hence the pkey value that we return to userspace can be different
100 * from the pkey that actually caused access error.
101 *
102 * It does *not* guarantee that the VMA we find here
103 * was the one that we faulted on.
104 *
105 * 1. T1 : mprotect_key(foo, PAGE_SIZE, pkey=4);
106 * 2. T1 : set AMR to deny access to pkey=4, touches, page
107 * 3. T1 : faults...
108 * 4. T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
109 * 5. T1 : enters fault handler, takes mmap_lock, etc...
110 * 6. T1 : reaches here, sees vma_pkey(vma)=5, when we really
111 * faulted on a pte with its pkey=4.
112 */
113 pkey = vma_pkey(vma);
114
115 mmap_read_unlock(mm);
116
117 /*
118 * If we are in kernel mode, bail out with a SEGV, this will
119 * be caught by the assembly which will restore the non-volatile
120 * registers before calling bad_page_fault()
121 */
122 if (!user_mode(regs))
123 return SIGSEGV;
124
125 _exception_pkey(regs, address, pkey);
126
127 return 0;
128 }
129 #endif
130
bad_access(struct pt_regs * regs,unsigned long address)131 static noinline int bad_access(struct pt_regs *regs, unsigned long address)
132 {
133 return __bad_area(regs, address, SEGV_ACCERR);
134 }
135
do_sigbus(struct pt_regs * regs,unsigned long address,vm_fault_t fault)136 static int do_sigbus(struct pt_regs *regs, unsigned long address,
137 vm_fault_t fault)
138 {
139 if (!user_mode(regs))
140 return SIGBUS;
141
142 current->thread.trap_nr = BUS_ADRERR;
143 #ifdef CONFIG_MEMORY_FAILURE
144 if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
145 unsigned int lsb = 0; /* shutup gcc */
146
147 pr_err("MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
148 current->comm, current->pid, address);
149
150 if (fault & VM_FAULT_HWPOISON_LARGE)
151 lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
152 if (fault & VM_FAULT_HWPOISON)
153 lsb = PAGE_SHIFT;
154
155 force_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb);
156 return 0;
157 }
158
159 #endif
160 force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)address);
161 return 0;
162 }
163
mm_fault_error(struct pt_regs * regs,unsigned long addr,vm_fault_t fault)164 static int mm_fault_error(struct pt_regs *regs, unsigned long addr,
165 vm_fault_t fault)
166 {
167 /*
168 * Kernel page fault interrupted by SIGKILL. We have no reason to
169 * continue processing.
170 */
171 if (fatal_signal_pending(current) && !user_mode(regs))
172 return SIGKILL;
173
174 /* Out of memory */
175 if (fault & VM_FAULT_OOM) {
176 /*
177 * We ran out of memory, or some other thing happened to us that
178 * made us unable to handle the page fault gracefully.
179 */
180 if (!user_mode(regs))
181 return SIGSEGV;
182 pagefault_out_of_memory();
183 } else {
184 if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
185 VM_FAULT_HWPOISON_LARGE))
186 return do_sigbus(regs, addr, fault);
187 else if (fault & VM_FAULT_SIGSEGV)
188 return bad_area_nosemaphore(regs, addr);
189 else
190 BUG();
191 }
192 return 0;
193 }
194
195 /* Is this a bad kernel fault ? */
bad_kernel_fault(struct pt_regs * regs,unsigned long error_code,unsigned long address,bool is_write)196 static bool bad_kernel_fault(struct pt_regs *regs, unsigned long error_code,
197 unsigned long address, bool is_write)
198 {
199 int is_exec = TRAP(regs) == 0x400;
200
201 if (is_exec) {
202 pr_crit_ratelimited("kernel tried to execute %s page (%lx) - exploit attempt? (uid: %d)\n",
203 address >= TASK_SIZE ? "exec-protected" : "user",
204 address,
205 from_kuid(&init_user_ns, current_uid()));
206
207 // Kernel exec fault is always bad
208 return true;
209 }
210
211 if (!is_exec && address < TASK_SIZE && (error_code & DSISR_PROTFAULT) &&
212 !search_exception_tables(regs->nip)) {
213 pr_crit_ratelimited("Kernel attempted to access user page (%lx) - exploit attempt? (uid: %d)\n",
214 address,
215 from_kuid(&init_user_ns, current_uid()));
216 }
217
218 // Kernel fault on kernel address is bad
219 if (address >= TASK_SIZE)
220 return true;
221
222 // Fault on user outside of certain regions (eg. copy_tofrom_user()) is bad
223 if (!search_exception_tables(regs->nip))
224 return true;
225
226 // Read/write fault in a valid region (the exception table search passed
227 // above), but blocked by KUAP is bad, it can never succeed.
228 if (bad_kuap_fault(regs, address, is_write))
229 return true;
230
231 // What's left? Kernel fault on user in well defined regions (extable
232 // matched), and allowed by KUAP in the faulting context.
233 return false;
234 }
235
236 #ifdef CONFIG_PPC_MEM_KEYS
access_pkey_error(bool is_write,bool is_exec,bool is_pkey,struct vm_area_struct * vma)237 static bool access_pkey_error(bool is_write, bool is_exec, bool is_pkey,
238 struct vm_area_struct *vma)
239 {
240 /*
241 * Make sure to check the VMA so that we do not perform
242 * faults just to hit a pkey fault as soon as we fill in a
243 * page. Only called for current mm, hence foreign == 0
244 */
245 if (!arch_vma_access_permitted(vma, is_write, is_exec, 0))
246 return true;
247
248 return false;
249 }
250 #endif
251
access_error(bool is_write,bool is_exec,struct vm_area_struct * vma)252 static bool access_error(bool is_write, bool is_exec, struct vm_area_struct *vma)
253 {
254 /*
255 * Allow execution from readable areas if the MMU does not
256 * provide separate controls over reading and executing.
257 *
258 * Note: That code used to not be enabled for 4xx/BookE.
259 * It is now as I/D cache coherency for these is done at
260 * set_pte_at() time and I see no reason why the test
261 * below wouldn't be valid on those processors. This -may-
262 * break programs compiled with a really old ABI though.
263 */
264 if (is_exec) {
265 return !(vma->vm_flags & VM_EXEC) &&
266 (cpu_has_feature(CPU_FTR_NOEXECUTE) ||
267 !(vma->vm_flags & (VM_READ | VM_WRITE)));
268 }
269
270 if (is_write) {
271 if (unlikely(!(vma->vm_flags & VM_WRITE)))
272 return true;
273 return false;
274 }
275
276 if (unlikely(!vma_is_accessible(vma)))
277 return true;
278 /*
279 * We should ideally do the vma pkey access check here. But in the
280 * fault path, handle_mm_fault() also does the same check. To avoid
281 * these multiple checks, we skip it here and handle access error due
282 * to pkeys later.
283 */
284 return false;
285 }
286
287 #ifdef CONFIG_PPC_SMLPAR
cmo_account_page_fault(void)288 static inline void cmo_account_page_fault(void)
289 {
290 if (firmware_has_feature(FW_FEATURE_CMO)) {
291 u32 page_ins;
292
293 preempt_disable();
294 page_ins = be32_to_cpu(get_lppaca()->page_ins);
295 page_ins += 1 << PAGE_FACTOR;
296 get_lppaca()->page_ins = cpu_to_be32(page_ins);
297 preempt_enable();
298 }
299 }
300 #else
cmo_account_page_fault(void)301 static inline void cmo_account_page_fault(void) { }
302 #endif /* CONFIG_PPC_SMLPAR */
303
sanity_check_fault(bool is_write,bool is_user,unsigned long error_code,unsigned long address)304 static void sanity_check_fault(bool is_write, bool is_user,
305 unsigned long error_code, unsigned long address)
306 {
307 /*
308 * Userspace trying to access kernel address, we get PROTFAULT for that.
309 */
310 if (is_user && address >= TASK_SIZE) {
311 if ((long)address == -1)
312 return;
313
314 pr_crit_ratelimited("%s[%d]: User access of kernel address (%lx) - exploit attempt? (uid: %d)\n",
315 current->comm, current->pid, address,
316 from_kuid(&init_user_ns, current_uid()));
317 return;
318 }
319
320 if (!IS_ENABLED(CONFIG_PPC_BOOK3S))
321 return;
322
323 /*
324 * For hash translation mode, we should never get a
325 * PROTFAULT. Any update to pte to reduce access will result in us
326 * removing the hash page table entry, thus resulting in a DSISR_NOHPTE
327 * fault instead of DSISR_PROTFAULT.
328 *
329 * A pte update to relax the access will not result in a hash page table
330 * entry invalidate and hence can result in DSISR_PROTFAULT.
331 * ptep_set_access_flags() doesn't do a hpte flush. This is why we have
332 * the special !is_write in the below conditional.
333 *
334 * For platforms that doesn't supports coherent icache and do support
335 * per page noexec bit, we do setup things such that we do the
336 * sync between D/I cache via fault. But that is handled via low level
337 * hash fault code (hash_page_do_lazy_icache()) and we should not reach
338 * here in such case.
339 *
340 * For wrong access that can result in PROTFAULT, the above vma->vm_flags
341 * check should handle those and hence we should fall to the bad_area
342 * handling correctly.
343 *
344 * For embedded with per page exec support that doesn't support coherent
345 * icache we do get PROTFAULT and we handle that D/I cache sync in
346 * set_pte_at while taking the noexec/prot fault. Hence this is WARN_ON
347 * is conditional for server MMU.
348 *
349 * For radix, we can get prot fault for autonuma case, because radix
350 * page table will have them marked noaccess for user.
351 */
352 if (radix_enabled() || is_write)
353 return;
354
355 WARN_ON_ONCE(error_code & DSISR_PROTFAULT);
356 }
357
358 /*
359 * Define the correct "is_write" bit in error_code based
360 * on the processor family
361 */
362 #if (defined(CONFIG_4xx) || defined(CONFIG_BOOKE))
363 #define page_fault_is_write(__err) ((__err) & ESR_DST)
364 #define page_fault_is_bad(__err) (0)
365 #else
366 #define page_fault_is_write(__err) ((__err) & DSISR_ISSTORE)
367 #if defined(CONFIG_PPC_8xx)
368 #define page_fault_is_bad(__err) ((__err) & DSISR_NOEXEC_OR_G)
369 #elif defined(CONFIG_PPC64)
370 #define page_fault_is_bad(__err) ((__err) & DSISR_BAD_FAULT_64S)
371 #else
372 #define page_fault_is_bad(__err) ((__err) & DSISR_BAD_FAULT_32S)
373 #endif
374 #endif
375
376 /*
377 * For 600- and 800-family processors, the error_code parameter is DSISR
378 * for a data fault, SRR1 for an instruction fault. For 400-family processors
379 * the error_code parameter is ESR for a data fault, 0 for an instruction
380 * fault.
381 * For 64-bit processors, the error_code parameter is
382 * - DSISR for a non-SLB data access fault,
383 * - SRR1 & 0x08000000 for a non-SLB instruction access fault
384 * - 0 any SLB fault.
385 *
386 * The return value is 0 if the fault was handled, or the signal
387 * number if this is a kernel fault that can't be handled here.
388 */
__do_page_fault(struct pt_regs * regs,unsigned long address,unsigned long error_code)389 static int __do_page_fault(struct pt_regs *regs, unsigned long address,
390 unsigned long error_code)
391 {
392 struct vm_area_struct * vma;
393 struct mm_struct *mm = current->mm;
394 unsigned int flags = FAULT_FLAG_DEFAULT;
395 int is_exec = TRAP(regs) == 0x400;
396 int is_user = user_mode(regs);
397 int is_write = page_fault_is_write(error_code);
398 vm_fault_t fault, major = 0;
399 bool kprobe_fault = kprobe_page_fault(regs, 11);
400
401 if (unlikely(debugger_fault_handler(regs) || kprobe_fault))
402 return 0;
403
404 if (unlikely(page_fault_is_bad(error_code))) {
405 if (is_user) {
406 _exception(SIGBUS, regs, BUS_OBJERR, address);
407 return 0;
408 }
409 return SIGBUS;
410 }
411
412 /* Additional sanity check(s) */
413 sanity_check_fault(is_write, is_user, error_code, address);
414
415 /*
416 * The kernel should never take an execute fault nor should it
417 * take a page fault to a kernel address or a page fault to a user
418 * address outside of dedicated places
419 */
420 if (unlikely(!is_user && bad_kernel_fault(regs, error_code, address, is_write)))
421 return SIGSEGV;
422
423 /*
424 * If we're in an interrupt, have no user context or are running
425 * in a region with pagefaults disabled then we must not take the fault
426 */
427 if (unlikely(faulthandler_disabled() || !mm)) {
428 if (is_user)
429 printk_ratelimited(KERN_ERR "Page fault in user mode"
430 " with faulthandler_disabled()=%d"
431 " mm=%p\n",
432 faulthandler_disabled(), mm);
433 return bad_area_nosemaphore(regs, address);
434 }
435
436 /* We restore the interrupt state now */
437 if (!arch_irq_disabled_regs(regs))
438 local_irq_enable();
439
440 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
441
442 /*
443 * We want to do this outside mmap_lock, because reading code around nip
444 * can result in fault, which will cause a deadlock when called with
445 * mmap_lock held
446 */
447 if (is_user)
448 flags |= FAULT_FLAG_USER;
449 if (is_write)
450 flags |= FAULT_FLAG_WRITE;
451 if (is_exec)
452 flags |= FAULT_FLAG_INSTRUCTION;
453
454 /* When running in the kernel we expect faults to occur only to
455 * addresses in user space. All other faults represent errors in the
456 * kernel and should generate an OOPS. Unfortunately, in the case of an
457 * erroneous fault occurring in a code path which already holds mmap_lock
458 * we will deadlock attempting to validate the fault against the
459 * address space. Luckily the kernel only validly references user
460 * space from well defined areas of code, which are listed in the
461 * exceptions table.
462 *
463 * As the vast majority of faults will be valid we will only perform
464 * the source reference check when there is a possibility of a deadlock.
465 * Attempt to lock the address space, if we cannot we then validate the
466 * source. If this is invalid we can skip the address space check,
467 * thus avoiding the deadlock.
468 */
469 if (unlikely(!mmap_read_trylock(mm))) {
470 if (!is_user && !search_exception_tables(regs->nip))
471 return bad_area_nosemaphore(regs, address);
472
473 retry:
474 mmap_read_lock(mm);
475 } else {
476 /*
477 * The above down_read_trylock() might have succeeded in
478 * which case we'll have missed the might_sleep() from
479 * down_read():
480 */
481 might_sleep();
482 }
483
484 vma = find_vma(mm, address);
485 if (unlikely(!vma))
486 return bad_area(regs, address);
487
488 if (unlikely(vma->vm_start > address)) {
489 if (unlikely(!(vma->vm_flags & VM_GROWSDOWN)))
490 return bad_area(regs, address);
491
492 if (unlikely(expand_stack(vma, address)))
493 return bad_area(regs, address);
494 }
495
496 #ifdef CONFIG_PPC_MEM_KEYS
497 if (unlikely(access_pkey_error(is_write, is_exec,
498 (error_code & DSISR_KEYFAULT), vma)))
499 return bad_access_pkey(regs, address, vma);
500 #endif /* CONFIG_PPC_MEM_KEYS */
501
502 if (unlikely(access_error(is_write, is_exec, vma)))
503 return bad_access(regs, address);
504
505 /*
506 * If for any reason at all we couldn't handle the fault,
507 * make sure we exit gracefully rather than endlessly redo
508 * the fault.
509 */
510 fault = handle_mm_fault(vma, address, flags, regs);
511
512 major |= fault & VM_FAULT_MAJOR;
513
514 if (fault_signal_pending(fault, regs))
515 return user_mode(regs) ? 0 : SIGBUS;
516
517 /*
518 * Handle the retry right now, the mmap_lock has been released in that
519 * case.
520 */
521 if (unlikely(fault & VM_FAULT_RETRY)) {
522 if (flags & FAULT_FLAG_ALLOW_RETRY) {
523 flags |= FAULT_FLAG_TRIED;
524 goto retry;
525 }
526 }
527
528 mmap_read_unlock(current->mm);
529
530 if (unlikely(fault & VM_FAULT_ERROR))
531 return mm_fault_error(regs, address, fault);
532
533 /*
534 * Major/minor page fault accounting.
535 */
536 if (major)
537 cmo_account_page_fault();
538
539 return 0;
540 }
541 NOKPROBE_SYMBOL(__do_page_fault);
542
do_page_fault(struct pt_regs * regs,unsigned long address,unsigned long error_code)543 int do_page_fault(struct pt_regs *regs, unsigned long address,
544 unsigned long error_code)
545 {
546 enum ctx_state prev_state = exception_enter();
547 int rc = __do_page_fault(regs, address, error_code);
548 exception_exit(prev_state);
549 return rc;
550 }
551 NOKPROBE_SYMBOL(do_page_fault);
552
553 /*
554 * bad_page_fault is called when we have a bad access from the kernel.
555 * It is called from the DSI and ISI handlers in head.S and from some
556 * of the procedures in traps.c.
557 */
bad_page_fault(struct pt_regs * regs,unsigned long address,int sig)558 void bad_page_fault(struct pt_regs *regs, unsigned long address, int sig)
559 {
560 const struct exception_table_entry *entry;
561 int is_write = page_fault_is_write(regs->dsisr);
562
563 /* Are we prepared to handle this fault? */
564 if ((entry = search_exception_tables(regs->nip)) != NULL) {
565 regs->nip = extable_fixup(entry);
566 return;
567 }
568
569 /* kernel has accessed a bad area */
570
571 switch (TRAP(regs)) {
572 case 0x300:
573 case 0x380:
574 case 0xe00:
575 pr_alert("BUG: %s on %s at 0x%08lx\n",
576 regs->dar < PAGE_SIZE ? "Kernel NULL pointer dereference" :
577 "Unable to handle kernel data access",
578 is_write ? "write" : "read", regs->dar);
579 break;
580 case 0x400:
581 case 0x480:
582 pr_alert("BUG: Unable to handle kernel instruction fetch%s",
583 regs->nip < PAGE_SIZE ? " (NULL pointer?)\n" : "\n");
584 break;
585 case 0x600:
586 pr_alert("BUG: Unable to handle kernel unaligned access at 0x%08lx\n",
587 regs->dar);
588 break;
589 default:
590 pr_alert("BUG: Unable to handle unknown paging fault at 0x%08lx\n",
591 regs->dar);
592 break;
593 }
594 printk(KERN_ALERT "Faulting instruction address: 0x%08lx\n",
595 regs->nip);
596
597 if (task_stack_end_corrupted(current))
598 printk(KERN_ALERT "Thread overran stack, or stack corrupted\n");
599
600 die("Kernel access of bad area", regs, sig);
601 }
602