1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * x86_64 specific EFI support functions
4 * Based on Extensible Firmware Interface Specification version 1.0
5 *
6 * Copyright (C) 2005-2008 Intel Co.
7 * Fenghua Yu <fenghua.yu@intel.com>
8 * Bibo Mao <bibo.mao@intel.com>
9 * Chandramouli Narayanan <mouli@linux.intel.com>
10 * Huang Ying <ying.huang@intel.com>
11 *
12 * Code to convert EFI to E820 map has been implemented in elilo bootloader
13 * based on a EFI patch by Edgar Hucek. Based on the E820 map, the page table
14 * is setup appropriately for EFI runtime code.
15 * - mouli 06/14/2007.
16 *
17 */
18
19 #define pr_fmt(fmt) "efi: " fmt
20
21 #include <linux/kernel.h>
22 #include <linux/init.h>
23 #include <linux/mm.h>
24 #include <linux/types.h>
25 #include <linux/spinlock.h>
26 #include <linux/memblock.h>
27 #include <linux/ioport.h>
28 #include <linux/mc146818rtc.h>
29 #include <linux/efi.h>
30 #include <linux/export.h>
31 #include <linux/uaccess.h>
32 #include <linux/io.h>
33 #include <linux/reboot.h>
34 #include <linux/slab.h>
35 #include <linux/ucs2_string.h>
36 #include <linux/mem_encrypt.h>
37 #include <linux/sched/task.h>
38
39 #include <asm/setup.h>
40 #include <asm/page.h>
41 #include <asm/e820/api.h>
42 #include <asm/tlbflush.h>
43 #include <asm/proto.h>
44 #include <asm/efi.h>
45 #include <asm/cacheflush.h>
46 #include <asm/fixmap.h>
47 #include <asm/realmode.h>
48 #include <asm/time.h>
49 #include <asm/pgalloc.h>
50 #include <asm/sev-es.h>
51
52 /*
53 * We allocate runtime services regions top-down, starting from -4G, i.e.
54 * 0xffff_ffff_0000_0000 and limit EFI VA mapping space to 64G.
55 */
56 static u64 efi_va = EFI_VA_START;
57
58 struct efi_scratch efi_scratch;
59
60 EXPORT_SYMBOL_GPL(efi_mm);
61
62 /*
63 * We need our own copy of the higher levels of the page tables
64 * because we want to avoid inserting EFI region mappings (EFI_VA_END
65 * to EFI_VA_START) into the standard kernel page tables. Everything
66 * else can be shared, see efi_sync_low_kernel_mappings().
67 *
68 * We don't want the pgd on the pgd_list and cannot use pgd_alloc() for the
69 * allocation.
70 */
efi_alloc_page_tables(void)71 int __init efi_alloc_page_tables(void)
72 {
73 pgd_t *pgd, *efi_pgd;
74 p4d_t *p4d;
75 pud_t *pud;
76 gfp_t gfp_mask;
77
78 gfp_mask = GFP_KERNEL | __GFP_ZERO;
79 efi_pgd = (pgd_t *)__get_free_pages(gfp_mask, PGD_ALLOCATION_ORDER);
80 if (!efi_pgd)
81 goto fail;
82
83 pgd = efi_pgd + pgd_index(EFI_VA_END);
84 p4d = p4d_alloc(&init_mm, pgd, EFI_VA_END);
85 if (!p4d)
86 goto free_pgd;
87
88 pud = pud_alloc(&init_mm, p4d, EFI_VA_END);
89 if (!pud)
90 goto free_p4d;
91
92 efi_mm.pgd = efi_pgd;
93 mm_init_cpumask(&efi_mm);
94 init_new_context(NULL, &efi_mm);
95
96 return 0;
97
98 free_p4d:
99 if (pgtable_l5_enabled())
100 free_page((unsigned long)pgd_page_vaddr(*pgd));
101 free_pgd:
102 free_pages((unsigned long)efi_pgd, PGD_ALLOCATION_ORDER);
103 fail:
104 return -ENOMEM;
105 }
106
107 /*
108 * Add low kernel mappings for passing arguments to EFI functions.
109 */
efi_sync_low_kernel_mappings(void)110 void efi_sync_low_kernel_mappings(void)
111 {
112 unsigned num_entries;
113 pgd_t *pgd_k, *pgd_efi;
114 p4d_t *p4d_k, *p4d_efi;
115 pud_t *pud_k, *pud_efi;
116 pgd_t *efi_pgd = efi_mm.pgd;
117
118 pgd_efi = efi_pgd + pgd_index(PAGE_OFFSET);
119 pgd_k = pgd_offset_k(PAGE_OFFSET);
120
121 num_entries = pgd_index(EFI_VA_END) - pgd_index(PAGE_OFFSET);
122 memcpy(pgd_efi, pgd_k, sizeof(pgd_t) * num_entries);
123
124 pgd_efi = efi_pgd + pgd_index(EFI_VA_END);
125 pgd_k = pgd_offset_k(EFI_VA_END);
126 p4d_efi = p4d_offset(pgd_efi, 0);
127 p4d_k = p4d_offset(pgd_k, 0);
128
129 num_entries = p4d_index(EFI_VA_END);
130 memcpy(p4d_efi, p4d_k, sizeof(p4d_t) * num_entries);
131
132 /*
133 * We share all the PUD entries apart from those that map the
134 * EFI regions. Copy around them.
135 */
136 BUILD_BUG_ON((EFI_VA_START & ~PUD_MASK) != 0);
137 BUILD_BUG_ON((EFI_VA_END & ~PUD_MASK) != 0);
138
139 p4d_efi = p4d_offset(pgd_efi, EFI_VA_END);
140 p4d_k = p4d_offset(pgd_k, EFI_VA_END);
141 pud_efi = pud_offset(p4d_efi, 0);
142 pud_k = pud_offset(p4d_k, 0);
143
144 num_entries = pud_index(EFI_VA_END);
145 memcpy(pud_efi, pud_k, sizeof(pud_t) * num_entries);
146
147 pud_efi = pud_offset(p4d_efi, EFI_VA_START);
148 pud_k = pud_offset(p4d_k, EFI_VA_START);
149
150 num_entries = PTRS_PER_PUD - pud_index(EFI_VA_START);
151 memcpy(pud_efi, pud_k, sizeof(pud_t) * num_entries);
152 }
153
154 /*
155 * Wrapper for slow_virt_to_phys() that handles NULL addresses.
156 */
157 static inline phys_addr_t
virt_to_phys_or_null_size(void * va,unsigned long size)158 virt_to_phys_or_null_size(void *va, unsigned long size)
159 {
160 phys_addr_t pa;
161
162 if (!va)
163 return 0;
164
165 if (virt_addr_valid(va))
166 return virt_to_phys(va);
167
168 pa = slow_virt_to_phys(va);
169
170 /* check if the object crosses a page boundary */
171 if (WARN_ON((pa ^ (pa + size - 1)) & PAGE_MASK))
172 return 0;
173
174 return pa;
175 }
176
177 #define virt_to_phys_or_null(addr) \
178 virt_to_phys_or_null_size((addr), sizeof(*(addr)))
179
efi_setup_page_tables(unsigned long pa_memmap,unsigned num_pages)180 int __init efi_setup_page_tables(unsigned long pa_memmap, unsigned num_pages)
181 {
182 unsigned long pfn, text, pf, rodata;
183 struct page *page;
184 unsigned npages;
185 pgd_t *pgd = efi_mm.pgd;
186
187 /*
188 * It can happen that the physical address of new_memmap lands in memory
189 * which is not mapped in the EFI page table. Therefore we need to go
190 * and ident-map those pages containing the map before calling
191 * phys_efi_set_virtual_address_map().
192 */
193 pfn = pa_memmap >> PAGE_SHIFT;
194 pf = _PAGE_NX | _PAGE_RW | _PAGE_ENC;
195 if (kernel_map_pages_in_pgd(pgd, pfn, pa_memmap, num_pages, pf)) {
196 pr_err("Error ident-mapping new memmap (0x%lx)!\n", pa_memmap);
197 return 1;
198 }
199
200 /*
201 * Certain firmware versions are way too sentimential and still believe
202 * they are exclusive and unquestionable owners of the first physical page,
203 * even though they explicitly mark it as EFI_CONVENTIONAL_MEMORY
204 * (but then write-access it later during SetVirtualAddressMap()).
205 *
206 * Create a 1:1 mapping for this page, to avoid triple faults during early
207 * boot with such firmware. We are free to hand this page to the BIOS,
208 * as trim_bios_range() will reserve the first page and isolate it away
209 * from memory allocators anyway.
210 */
211 if (kernel_map_pages_in_pgd(pgd, 0x0, 0x0, 1, pf)) {
212 pr_err("Failed to create 1:1 mapping for the first page!\n");
213 return 1;
214 }
215
216 /*
217 * When SEV-ES is active, the GHCB as set by the kernel will be used
218 * by firmware. Create a 1:1 unencrypted mapping for each GHCB.
219 */
220 if (sev_es_efi_map_ghcbs(pgd)) {
221 pr_err("Failed to create 1:1 mapping for the GHCBs!\n");
222 return 1;
223 }
224
225 /*
226 * When making calls to the firmware everything needs to be 1:1
227 * mapped and addressable with 32-bit pointers. Map the kernel
228 * text and allocate a new stack because we can't rely on the
229 * stack pointer being < 4GB.
230 */
231 if (!efi_is_mixed())
232 return 0;
233
234 page = alloc_page(GFP_KERNEL|__GFP_DMA32);
235 if (!page) {
236 pr_err("Unable to allocate EFI runtime stack < 4GB\n");
237 return 1;
238 }
239
240 efi_scratch.phys_stack = page_to_phys(page + 1); /* stack grows down */
241
242 npages = (_etext - _text) >> PAGE_SHIFT;
243 text = __pa(_text);
244 pfn = text >> PAGE_SHIFT;
245
246 pf = _PAGE_ENC;
247 if (kernel_map_pages_in_pgd(pgd, pfn, text, npages, pf)) {
248 pr_err("Failed to map kernel text 1:1\n");
249 return 1;
250 }
251
252 npages = (__end_rodata - __start_rodata) >> PAGE_SHIFT;
253 rodata = __pa(__start_rodata);
254 pfn = rodata >> PAGE_SHIFT;
255
256 pf = _PAGE_NX | _PAGE_ENC;
257 if (kernel_map_pages_in_pgd(pgd, pfn, rodata, npages, pf)) {
258 pr_err("Failed to map kernel rodata 1:1\n");
259 return 1;
260 }
261
262 return 0;
263 }
264
__map_region(efi_memory_desc_t * md,u64 va)265 static void __init __map_region(efi_memory_desc_t *md, u64 va)
266 {
267 unsigned long flags = _PAGE_RW;
268 unsigned long pfn;
269 pgd_t *pgd = efi_mm.pgd;
270
271 /*
272 * EFI_RUNTIME_SERVICES_CODE regions typically cover PE/COFF
273 * executable images in memory that consist of both R-X and
274 * RW- sections, so we cannot apply read-only or non-exec
275 * permissions just yet. However, modern EFI systems provide
276 * a memory attributes table that describes those sections
277 * with the appropriate restricted permissions, which are
278 * applied in efi_runtime_update_mappings() below. All other
279 * regions can be mapped non-executable at this point, with
280 * the exception of boot services code regions, but those will
281 * be unmapped again entirely in efi_free_boot_services().
282 */
283 if (md->type != EFI_BOOT_SERVICES_CODE &&
284 md->type != EFI_RUNTIME_SERVICES_CODE)
285 flags |= _PAGE_NX;
286
287 if (!(md->attribute & EFI_MEMORY_WB))
288 flags |= _PAGE_PCD;
289
290 if (sev_active() && md->type != EFI_MEMORY_MAPPED_IO)
291 flags |= _PAGE_ENC;
292
293 pfn = md->phys_addr >> PAGE_SHIFT;
294 if (kernel_map_pages_in_pgd(pgd, pfn, va, md->num_pages, flags))
295 pr_warn("Error mapping PA 0x%llx -> VA 0x%llx!\n",
296 md->phys_addr, va);
297 }
298
efi_map_region(efi_memory_desc_t * md)299 void __init efi_map_region(efi_memory_desc_t *md)
300 {
301 unsigned long size = md->num_pages << PAGE_SHIFT;
302 u64 pa = md->phys_addr;
303
304 /*
305 * Make sure the 1:1 mappings are present as a catch-all for b0rked
306 * firmware which doesn't update all internal pointers after switching
307 * to virtual mode and would otherwise crap on us.
308 */
309 __map_region(md, md->phys_addr);
310
311 /*
312 * Enforce the 1:1 mapping as the default virtual address when
313 * booting in EFI mixed mode, because even though we may be
314 * running a 64-bit kernel, the firmware may only be 32-bit.
315 */
316 if (efi_is_mixed()) {
317 md->virt_addr = md->phys_addr;
318 return;
319 }
320
321 efi_va -= size;
322
323 /* Is PA 2M-aligned? */
324 if (!(pa & (PMD_SIZE - 1))) {
325 efi_va &= PMD_MASK;
326 } else {
327 u64 pa_offset = pa & (PMD_SIZE - 1);
328 u64 prev_va = efi_va;
329
330 /* get us the same offset within this 2M page */
331 efi_va = (efi_va & PMD_MASK) + pa_offset;
332
333 if (efi_va > prev_va)
334 efi_va -= PMD_SIZE;
335 }
336
337 if (efi_va < EFI_VA_END) {
338 pr_warn(FW_WARN "VA address range overflow!\n");
339 return;
340 }
341
342 /* Do the VA map */
343 __map_region(md, efi_va);
344 md->virt_addr = efi_va;
345 }
346
347 /*
348 * kexec kernel will use efi_map_region_fixed to map efi runtime memory ranges.
349 * md->virt_addr is the original virtual address which had been mapped in kexec
350 * 1st kernel.
351 */
efi_map_region_fixed(efi_memory_desc_t * md)352 void __init efi_map_region_fixed(efi_memory_desc_t *md)
353 {
354 __map_region(md, md->phys_addr);
355 __map_region(md, md->virt_addr);
356 }
357
parse_efi_setup(u64 phys_addr,u32 data_len)358 void __init parse_efi_setup(u64 phys_addr, u32 data_len)
359 {
360 efi_setup = phys_addr + sizeof(struct setup_data);
361 }
362
efi_update_mappings(efi_memory_desc_t * md,unsigned long pf)363 static int __init efi_update_mappings(efi_memory_desc_t *md, unsigned long pf)
364 {
365 unsigned long pfn;
366 pgd_t *pgd = efi_mm.pgd;
367 int err1, err2;
368
369 /* Update the 1:1 mapping */
370 pfn = md->phys_addr >> PAGE_SHIFT;
371 err1 = kernel_map_pages_in_pgd(pgd, pfn, md->phys_addr, md->num_pages, pf);
372 if (err1) {
373 pr_err("Error while updating 1:1 mapping PA 0x%llx -> VA 0x%llx!\n",
374 md->phys_addr, md->virt_addr);
375 }
376
377 err2 = kernel_map_pages_in_pgd(pgd, pfn, md->virt_addr, md->num_pages, pf);
378 if (err2) {
379 pr_err("Error while updating VA mapping PA 0x%llx -> VA 0x%llx!\n",
380 md->phys_addr, md->virt_addr);
381 }
382
383 return err1 || err2;
384 }
385
efi_update_mem_attr(struct mm_struct * mm,efi_memory_desc_t * md)386 static int __init efi_update_mem_attr(struct mm_struct *mm, efi_memory_desc_t *md)
387 {
388 unsigned long pf = 0;
389
390 if (md->attribute & EFI_MEMORY_XP)
391 pf |= _PAGE_NX;
392
393 if (!(md->attribute & EFI_MEMORY_RO))
394 pf |= _PAGE_RW;
395
396 if (sev_active())
397 pf |= _PAGE_ENC;
398
399 return efi_update_mappings(md, pf);
400 }
401
efi_runtime_update_mappings(void)402 void __init efi_runtime_update_mappings(void)
403 {
404 efi_memory_desc_t *md;
405
406 /*
407 * Use the EFI Memory Attribute Table for mapping permissions if it
408 * exists, since it is intended to supersede EFI_PROPERTIES_TABLE.
409 */
410 if (efi_enabled(EFI_MEM_ATTR)) {
411 efi_memattr_apply_permissions(NULL, efi_update_mem_attr);
412 return;
413 }
414
415 /*
416 * EFI_MEMORY_ATTRIBUTES_TABLE is intended to replace
417 * EFI_PROPERTIES_TABLE. So, use EFI_PROPERTIES_TABLE to update
418 * permissions only if EFI_MEMORY_ATTRIBUTES_TABLE is not
419 * published by the firmware. Even if we find a buggy implementation of
420 * EFI_MEMORY_ATTRIBUTES_TABLE, don't fall back to
421 * EFI_PROPERTIES_TABLE, because of the same reason.
422 */
423
424 if (!efi_enabled(EFI_NX_PE_DATA))
425 return;
426
427 for_each_efi_memory_desc(md) {
428 unsigned long pf = 0;
429
430 if (!(md->attribute & EFI_MEMORY_RUNTIME))
431 continue;
432
433 if (!(md->attribute & EFI_MEMORY_WB))
434 pf |= _PAGE_PCD;
435
436 if ((md->attribute & EFI_MEMORY_XP) ||
437 (md->type == EFI_RUNTIME_SERVICES_DATA))
438 pf |= _PAGE_NX;
439
440 if (!(md->attribute & EFI_MEMORY_RO) &&
441 (md->type != EFI_RUNTIME_SERVICES_CODE))
442 pf |= _PAGE_RW;
443
444 if (sev_active())
445 pf |= _PAGE_ENC;
446
447 efi_update_mappings(md, pf);
448 }
449 }
450
efi_dump_pagetable(void)451 void __init efi_dump_pagetable(void)
452 {
453 #ifdef CONFIG_EFI_PGT_DUMP
454 ptdump_walk_pgd_level(NULL, &efi_mm);
455 #endif
456 }
457
458 /*
459 * Makes the calling thread switch to/from efi_mm context. Can be used
460 * in a kernel thread and user context. Preemption needs to remain disabled
461 * while the EFI-mm is borrowed. mmgrab()/mmdrop() is not used because the mm
462 * can not change under us.
463 * It should be ensured that there are no concurent calls to this function.
464 */
efi_switch_mm(struct mm_struct * mm)465 void efi_switch_mm(struct mm_struct *mm)
466 {
467 efi_scratch.prev_mm = current->active_mm;
468 current->active_mm = mm;
469 switch_mm(efi_scratch.prev_mm, mm, NULL);
470 }
471
472 static DEFINE_SPINLOCK(efi_runtime_lock);
473
474 /*
475 * DS and ES contain user values. We need to save them.
476 * The 32-bit EFI code needs a valid DS, ES, and SS. There's no
477 * need to save the old SS: __KERNEL_DS is always acceptable.
478 */
479 #define __efi_thunk(func, ...) \
480 ({ \
481 unsigned short __ds, __es; \
482 efi_status_t ____s; \
483 \
484 savesegment(ds, __ds); \
485 savesegment(es, __es); \
486 \
487 loadsegment(ss, __KERNEL_DS); \
488 loadsegment(ds, __KERNEL_DS); \
489 loadsegment(es, __KERNEL_DS); \
490 \
491 ____s = efi64_thunk(efi.runtime->mixed_mode.func, __VA_ARGS__); \
492 \
493 loadsegment(ds, __ds); \
494 loadsegment(es, __es); \
495 \
496 ____s ^= (____s & BIT(31)) | (____s & BIT_ULL(31)) << 32; \
497 ____s; \
498 })
499
500 /*
501 * Switch to the EFI page tables early so that we can access the 1:1
502 * runtime services mappings which are not mapped in any other page
503 * tables.
504 *
505 * Also, disable interrupts because the IDT points to 64-bit handlers,
506 * which aren't going to function correctly when we switch to 32-bit.
507 */
508 #define efi_thunk(func...) \
509 ({ \
510 efi_status_t __s; \
511 \
512 arch_efi_call_virt_setup(); \
513 \
514 __s = __efi_thunk(func); \
515 \
516 arch_efi_call_virt_teardown(); \
517 \
518 __s; \
519 })
520
521 static efi_status_t __init __no_sanitize_address
efi_thunk_set_virtual_address_map(unsigned long memory_map_size,unsigned long descriptor_size,u32 descriptor_version,efi_memory_desc_t * virtual_map)522 efi_thunk_set_virtual_address_map(unsigned long memory_map_size,
523 unsigned long descriptor_size,
524 u32 descriptor_version,
525 efi_memory_desc_t *virtual_map)
526 {
527 efi_status_t status;
528 unsigned long flags;
529
530 efi_sync_low_kernel_mappings();
531 local_irq_save(flags);
532
533 efi_switch_mm(&efi_mm);
534
535 status = __efi_thunk(set_virtual_address_map, memory_map_size,
536 descriptor_size, descriptor_version, virtual_map);
537
538 efi_switch_mm(efi_scratch.prev_mm);
539 local_irq_restore(flags);
540
541 return status;
542 }
543
efi_thunk_get_time(efi_time_t * tm,efi_time_cap_t * tc)544 static efi_status_t efi_thunk_get_time(efi_time_t *tm, efi_time_cap_t *tc)
545 {
546 return EFI_UNSUPPORTED;
547 }
548
efi_thunk_set_time(efi_time_t * tm)549 static efi_status_t efi_thunk_set_time(efi_time_t *tm)
550 {
551 return EFI_UNSUPPORTED;
552 }
553
554 static efi_status_t
efi_thunk_get_wakeup_time(efi_bool_t * enabled,efi_bool_t * pending,efi_time_t * tm)555 efi_thunk_get_wakeup_time(efi_bool_t *enabled, efi_bool_t *pending,
556 efi_time_t *tm)
557 {
558 return EFI_UNSUPPORTED;
559 }
560
561 static efi_status_t
efi_thunk_set_wakeup_time(efi_bool_t enabled,efi_time_t * tm)562 efi_thunk_set_wakeup_time(efi_bool_t enabled, efi_time_t *tm)
563 {
564 return EFI_UNSUPPORTED;
565 }
566
efi_name_size(efi_char16_t * name)567 static unsigned long efi_name_size(efi_char16_t *name)
568 {
569 return ucs2_strsize(name, EFI_VAR_NAME_LEN) + 1;
570 }
571
572 static efi_status_t
efi_thunk_get_variable(efi_char16_t * name,efi_guid_t * vendor,u32 * attr,unsigned long * data_size,void * data)573 efi_thunk_get_variable(efi_char16_t *name, efi_guid_t *vendor,
574 u32 *attr, unsigned long *data_size, void *data)
575 {
576 u8 buf[24] __aligned(8);
577 efi_guid_t *vnd = PTR_ALIGN((efi_guid_t *)buf, sizeof(*vnd));
578 efi_status_t status;
579 u32 phys_name, phys_vendor, phys_attr;
580 u32 phys_data_size, phys_data;
581 unsigned long flags;
582
583 spin_lock_irqsave(&efi_runtime_lock, flags);
584
585 *vnd = *vendor;
586
587 phys_data_size = virt_to_phys_or_null(data_size);
588 phys_vendor = virt_to_phys_or_null(vnd);
589 phys_name = virt_to_phys_or_null_size(name, efi_name_size(name));
590 phys_attr = virt_to_phys_or_null(attr);
591 phys_data = virt_to_phys_or_null_size(data, *data_size);
592
593 if (!phys_name || (data && !phys_data))
594 status = EFI_INVALID_PARAMETER;
595 else
596 status = efi_thunk(get_variable, phys_name, phys_vendor,
597 phys_attr, phys_data_size, phys_data);
598
599 spin_unlock_irqrestore(&efi_runtime_lock, flags);
600
601 return status;
602 }
603
604 static efi_status_t
efi_thunk_set_variable(efi_char16_t * name,efi_guid_t * vendor,u32 attr,unsigned long data_size,void * data)605 efi_thunk_set_variable(efi_char16_t *name, efi_guid_t *vendor,
606 u32 attr, unsigned long data_size, void *data)
607 {
608 u8 buf[24] __aligned(8);
609 efi_guid_t *vnd = PTR_ALIGN((efi_guid_t *)buf, sizeof(*vnd));
610 u32 phys_name, phys_vendor, phys_data;
611 efi_status_t status;
612 unsigned long flags;
613
614 spin_lock_irqsave(&efi_runtime_lock, flags);
615
616 *vnd = *vendor;
617
618 phys_name = virt_to_phys_or_null_size(name, efi_name_size(name));
619 phys_vendor = virt_to_phys_or_null(vnd);
620 phys_data = virt_to_phys_or_null_size(data, data_size);
621
622 if (!phys_name || (data && !phys_data))
623 status = EFI_INVALID_PARAMETER;
624 else
625 status = efi_thunk(set_variable, phys_name, phys_vendor,
626 attr, data_size, phys_data);
627
628 spin_unlock_irqrestore(&efi_runtime_lock, flags);
629
630 return status;
631 }
632
633 static efi_status_t
efi_thunk_set_variable_nonblocking(efi_char16_t * name,efi_guid_t * vendor,u32 attr,unsigned long data_size,void * data)634 efi_thunk_set_variable_nonblocking(efi_char16_t *name, efi_guid_t *vendor,
635 u32 attr, unsigned long data_size,
636 void *data)
637 {
638 u8 buf[24] __aligned(8);
639 efi_guid_t *vnd = PTR_ALIGN((efi_guid_t *)buf, sizeof(*vnd));
640 u32 phys_name, phys_vendor, phys_data;
641 efi_status_t status;
642 unsigned long flags;
643
644 if (!spin_trylock_irqsave(&efi_runtime_lock, flags))
645 return EFI_NOT_READY;
646
647 *vnd = *vendor;
648
649 phys_name = virt_to_phys_or_null_size(name, efi_name_size(name));
650 phys_vendor = virt_to_phys_or_null(vnd);
651 phys_data = virt_to_phys_or_null_size(data, data_size);
652
653 if (!phys_name || (data && !phys_data))
654 status = EFI_INVALID_PARAMETER;
655 else
656 status = efi_thunk(set_variable, phys_name, phys_vendor,
657 attr, data_size, phys_data);
658
659 spin_unlock_irqrestore(&efi_runtime_lock, flags);
660
661 return status;
662 }
663
664 static efi_status_t
efi_thunk_get_next_variable(unsigned long * name_size,efi_char16_t * name,efi_guid_t * vendor)665 efi_thunk_get_next_variable(unsigned long *name_size,
666 efi_char16_t *name,
667 efi_guid_t *vendor)
668 {
669 u8 buf[24] __aligned(8);
670 efi_guid_t *vnd = PTR_ALIGN((efi_guid_t *)buf, sizeof(*vnd));
671 efi_status_t status;
672 u32 phys_name_size, phys_name, phys_vendor;
673 unsigned long flags;
674
675 spin_lock_irqsave(&efi_runtime_lock, flags);
676
677 *vnd = *vendor;
678
679 phys_name_size = virt_to_phys_or_null(name_size);
680 phys_vendor = virt_to_phys_or_null(vnd);
681 phys_name = virt_to_phys_or_null_size(name, *name_size);
682
683 if (!phys_name)
684 status = EFI_INVALID_PARAMETER;
685 else
686 status = efi_thunk(get_next_variable, phys_name_size,
687 phys_name, phys_vendor);
688
689 spin_unlock_irqrestore(&efi_runtime_lock, flags);
690
691 *vendor = *vnd;
692 return status;
693 }
694
695 static efi_status_t
efi_thunk_get_next_high_mono_count(u32 * count)696 efi_thunk_get_next_high_mono_count(u32 *count)
697 {
698 return EFI_UNSUPPORTED;
699 }
700
701 static void
efi_thunk_reset_system(int reset_type,efi_status_t status,unsigned long data_size,efi_char16_t * data)702 efi_thunk_reset_system(int reset_type, efi_status_t status,
703 unsigned long data_size, efi_char16_t *data)
704 {
705 u32 phys_data;
706 unsigned long flags;
707
708 spin_lock_irqsave(&efi_runtime_lock, flags);
709
710 phys_data = virt_to_phys_or_null_size(data, data_size);
711
712 efi_thunk(reset_system, reset_type, status, data_size, phys_data);
713
714 spin_unlock_irqrestore(&efi_runtime_lock, flags);
715 }
716
717 static efi_status_t
efi_thunk_update_capsule(efi_capsule_header_t ** capsules,unsigned long count,unsigned long sg_list)718 efi_thunk_update_capsule(efi_capsule_header_t **capsules,
719 unsigned long count, unsigned long sg_list)
720 {
721 /*
722 * To properly support this function we would need to repackage
723 * 'capsules' because the firmware doesn't understand 64-bit
724 * pointers.
725 */
726 return EFI_UNSUPPORTED;
727 }
728
729 static efi_status_t
efi_thunk_query_variable_info(u32 attr,u64 * storage_space,u64 * remaining_space,u64 * max_variable_size)730 efi_thunk_query_variable_info(u32 attr, u64 *storage_space,
731 u64 *remaining_space,
732 u64 *max_variable_size)
733 {
734 efi_status_t status;
735 u32 phys_storage, phys_remaining, phys_max;
736 unsigned long flags;
737
738 if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION)
739 return EFI_UNSUPPORTED;
740
741 spin_lock_irqsave(&efi_runtime_lock, flags);
742
743 phys_storage = virt_to_phys_or_null(storage_space);
744 phys_remaining = virt_to_phys_or_null(remaining_space);
745 phys_max = virt_to_phys_or_null(max_variable_size);
746
747 status = efi_thunk(query_variable_info, attr, phys_storage,
748 phys_remaining, phys_max);
749
750 spin_unlock_irqrestore(&efi_runtime_lock, flags);
751
752 return status;
753 }
754
755 static efi_status_t
efi_thunk_query_variable_info_nonblocking(u32 attr,u64 * storage_space,u64 * remaining_space,u64 * max_variable_size)756 efi_thunk_query_variable_info_nonblocking(u32 attr, u64 *storage_space,
757 u64 *remaining_space,
758 u64 *max_variable_size)
759 {
760 efi_status_t status;
761 u32 phys_storage, phys_remaining, phys_max;
762 unsigned long flags;
763
764 if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION)
765 return EFI_UNSUPPORTED;
766
767 if (!spin_trylock_irqsave(&efi_runtime_lock, flags))
768 return EFI_NOT_READY;
769
770 phys_storage = virt_to_phys_or_null(storage_space);
771 phys_remaining = virt_to_phys_or_null(remaining_space);
772 phys_max = virt_to_phys_or_null(max_variable_size);
773
774 status = efi_thunk(query_variable_info, attr, phys_storage,
775 phys_remaining, phys_max);
776
777 spin_unlock_irqrestore(&efi_runtime_lock, flags);
778
779 return status;
780 }
781
782 static efi_status_t
efi_thunk_query_capsule_caps(efi_capsule_header_t ** capsules,unsigned long count,u64 * max_size,int * reset_type)783 efi_thunk_query_capsule_caps(efi_capsule_header_t **capsules,
784 unsigned long count, u64 *max_size,
785 int *reset_type)
786 {
787 /*
788 * To properly support this function we would need to repackage
789 * 'capsules' because the firmware doesn't understand 64-bit
790 * pointers.
791 */
792 return EFI_UNSUPPORTED;
793 }
794
efi_thunk_runtime_setup(void)795 void __init efi_thunk_runtime_setup(void)
796 {
797 if (!IS_ENABLED(CONFIG_EFI_MIXED))
798 return;
799
800 efi.get_time = efi_thunk_get_time;
801 efi.set_time = efi_thunk_set_time;
802 efi.get_wakeup_time = efi_thunk_get_wakeup_time;
803 efi.set_wakeup_time = efi_thunk_set_wakeup_time;
804 efi.get_variable = efi_thunk_get_variable;
805 efi.get_next_variable = efi_thunk_get_next_variable;
806 efi.set_variable = efi_thunk_set_variable;
807 efi.set_variable_nonblocking = efi_thunk_set_variable_nonblocking;
808 efi.get_next_high_mono_count = efi_thunk_get_next_high_mono_count;
809 efi.reset_system = efi_thunk_reset_system;
810 efi.query_variable_info = efi_thunk_query_variable_info;
811 efi.query_variable_info_nonblocking = efi_thunk_query_variable_info_nonblocking;
812 efi.update_capsule = efi_thunk_update_capsule;
813 efi.query_capsule_caps = efi_thunk_query_capsule_caps;
814 }
815
816 efi_status_t __init __no_sanitize_address
efi_set_virtual_address_map(unsigned long memory_map_size,unsigned long descriptor_size,u32 descriptor_version,efi_memory_desc_t * virtual_map,unsigned long systab_phys)817 efi_set_virtual_address_map(unsigned long memory_map_size,
818 unsigned long descriptor_size,
819 u32 descriptor_version,
820 efi_memory_desc_t *virtual_map,
821 unsigned long systab_phys)
822 {
823 const efi_system_table_t *systab = (efi_system_table_t *)systab_phys;
824 efi_status_t status;
825 unsigned long flags;
826
827 if (efi_is_mixed())
828 return efi_thunk_set_virtual_address_map(memory_map_size,
829 descriptor_size,
830 descriptor_version,
831 virtual_map);
832 efi_switch_mm(&efi_mm);
833
834 kernel_fpu_begin();
835
836 /* Disable interrupts around EFI calls: */
837 local_irq_save(flags);
838 status = efi_call(efi.runtime->set_virtual_address_map,
839 memory_map_size, descriptor_size,
840 descriptor_version, virtual_map);
841 local_irq_restore(flags);
842
843 kernel_fpu_end();
844
845 /* grab the virtually remapped EFI runtime services table pointer */
846 efi.runtime = READ_ONCE(systab->runtime);
847
848 efi_switch_mm(efi_scratch.prev_mm);
849
850 return status;
851 }
852