1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Interface for controlling IO bandwidth on a request queue
4 *
5 * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
6 */
7
8 #include <linux/module.h>
9 #include <linux/slab.h>
10 #include <linux/blkdev.h>
11 #include <linux/bio.h>
12 #include <linux/blktrace_api.h>
13 #include <linux/blk-cgroup.h>
14 #include <linux/delay.h>
15 #include "blk.h"
16 #include "blk-cgroup-rwstat.h"
17
18 /* Max dispatch from a group in 1 round */
19 #define THROTL_GRP_QUANTUM 8
20
21 /* Total max dispatch from all groups in one round */
22 #define THROTL_QUANTUM 32
23
24 /* Throttling is performed over a slice and after that slice is renewed */
25 #define DFL_THROTL_SLICE_HD (HZ / 10)
26 #define DFL_THROTL_SLICE_SSD (HZ / 50)
27 #define MAX_THROTL_SLICE (HZ)
28 #define MAX_IDLE_TIME (5L * 1000 * 1000) /* 5 s */
29 #define MIN_THROTL_BPS (320 * 1024)
30 #define MIN_THROTL_IOPS (10)
31 #define DFL_LATENCY_TARGET (-1L)
32 #define DFL_IDLE_THRESHOLD (0)
33 #define DFL_HD_BASELINE_LATENCY (4000L) /* 4ms */
34 #define LATENCY_FILTERED_SSD (0)
35 /*
36 * For HD, very small latency comes from sequential IO. Such IO is helpless to
37 * help determine if its IO is impacted by others, hence we ignore the IO
38 */
39 #define LATENCY_FILTERED_HD (1000L) /* 1ms */
40
41 static struct blkcg_policy blkcg_policy_throtl;
42
43 /* A workqueue to queue throttle related work */
44 static struct workqueue_struct *kthrotld_workqueue;
45
46 /*
47 * To implement hierarchical throttling, throtl_grps form a tree and bios
48 * are dispatched upwards level by level until they reach the top and get
49 * issued. When dispatching bios from the children and local group at each
50 * level, if the bios are dispatched into a single bio_list, there's a risk
51 * of a local or child group which can queue many bios at once filling up
52 * the list starving others.
53 *
54 * To avoid such starvation, dispatched bios are queued separately
55 * according to where they came from. When they are again dispatched to
56 * the parent, they're popped in round-robin order so that no single source
57 * hogs the dispatch window.
58 *
59 * throtl_qnode is used to keep the queued bios separated by their sources.
60 * Bios are queued to throtl_qnode which in turn is queued to
61 * throtl_service_queue and then dispatched in round-robin order.
62 *
63 * It's also used to track the reference counts on blkg's. A qnode always
64 * belongs to a throtl_grp and gets queued on itself or the parent, so
65 * incrementing the reference of the associated throtl_grp when a qnode is
66 * queued and decrementing when dequeued is enough to keep the whole blkg
67 * tree pinned while bios are in flight.
68 */
69 struct throtl_qnode {
70 struct list_head node; /* service_queue->queued[] */
71 struct bio_list bios; /* queued bios */
72 struct throtl_grp *tg; /* tg this qnode belongs to */
73 };
74
75 struct throtl_service_queue {
76 struct throtl_service_queue *parent_sq; /* the parent service_queue */
77
78 /*
79 * Bios queued directly to this service_queue or dispatched from
80 * children throtl_grp's.
81 */
82 struct list_head queued[2]; /* throtl_qnode [READ/WRITE] */
83 unsigned int nr_queued[2]; /* number of queued bios */
84
85 /*
86 * RB tree of active children throtl_grp's, which are sorted by
87 * their ->disptime.
88 */
89 struct rb_root_cached pending_tree; /* RB tree of active tgs */
90 unsigned int nr_pending; /* # queued in the tree */
91 unsigned long first_pending_disptime; /* disptime of the first tg */
92 struct timer_list pending_timer; /* fires on first_pending_disptime */
93 };
94
95 enum tg_state_flags {
96 THROTL_TG_PENDING = 1 << 0, /* on parent's pending tree */
97 THROTL_TG_WAS_EMPTY = 1 << 1, /* bio_lists[] became non-empty */
98 };
99
100 #define rb_entry_tg(node) rb_entry((node), struct throtl_grp, rb_node)
101
102 enum {
103 LIMIT_LOW,
104 LIMIT_MAX,
105 LIMIT_CNT,
106 };
107
108 struct throtl_grp {
109 /* must be the first member */
110 struct blkg_policy_data pd;
111
112 /* active throtl group service_queue member */
113 struct rb_node rb_node;
114
115 /* throtl_data this group belongs to */
116 struct throtl_data *td;
117
118 /* this group's service queue */
119 struct throtl_service_queue service_queue;
120
121 /*
122 * qnode_on_self is used when bios are directly queued to this
123 * throtl_grp so that local bios compete fairly with bios
124 * dispatched from children. qnode_on_parent is used when bios are
125 * dispatched from this throtl_grp into its parent and will compete
126 * with the sibling qnode_on_parents and the parent's
127 * qnode_on_self.
128 */
129 struct throtl_qnode qnode_on_self[2];
130 struct throtl_qnode qnode_on_parent[2];
131
132 /*
133 * Dispatch time in jiffies. This is the estimated time when group
134 * will unthrottle and is ready to dispatch more bio. It is used as
135 * key to sort active groups in service tree.
136 */
137 unsigned long disptime;
138
139 unsigned int flags;
140
141 /* are there any throtl rules between this group and td? */
142 bool has_rules[2];
143
144 /* internally used bytes per second rate limits */
145 uint64_t bps[2][LIMIT_CNT];
146 /* user configured bps limits */
147 uint64_t bps_conf[2][LIMIT_CNT];
148
149 /* internally used IOPS limits */
150 unsigned int iops[2][LIMIT_CNT];
151 /* user configured IOPS limits */
152 unsigned int iops_conf[2][LIMIT_CNT];
153
154 /* Number of bytes dispatched in current slice */
155 uint64_t bytes_disp[2];
156 /* Number of bio's dispatched in current slice */
157 unsigned int io_disp[2];
158
159 unsigned long last_low_overflow_time[2];
160
161 uint64_t last_bytes_disp[2];
162 unsigned int last_io_disp[2];
163
164 unsigned long last_check_time;
165
166 unsigned long latency_target; /* us */
167 unsigned long latency_target_conf; /* us */
168 /* When did we start a new slice */
169 unsigned long slice_start[2];
170 unsigned long slice_end[2];
171
172 unsigned long last_finish_time; /* ns / 1024 */
173 unsigned long checked_last_finish_time; /* ns / 1024 */
174 unsigned long avg_idletime; /* ns / 1024 */
175 unsigned long idletime_threshold; /* us */
176 unsigned long idletime_threshold_conf; /* us */
177
178 unsigned int bio_cnt; /* total bios */
179 unsigned int bad_bio_cnt; /* bios exceeding latency threshold */
180 unsigned long bio_cnt_reset_time;
181
182 atomic_t io_split_cnt[2];
183 atomic_t last_io_split_cnt[2];
184
185 struct blkg_rwstat stat_bytes;
186 struct blkg_rwstat stat_ios;
187 };
188
189 /* We measure latency for request size from <= 4k to >= 1M */
190 #define LATENCY_BUCKET_SIZE 9
191
192 struct latency_bucket {
193 unsigned long total_latency; /* ns / 1024 */
194 int samples;
195 };
196
197 struct avg_latency_bucket {
198 unsigned long latency; /* ns / 1024 */
199 bool valid;
200 };
201
202 struct throtl_data
203 {
204 /* service tree for active throtl groups */
205 struct throtl_service_queue service_queue;
206
207 struct request_queue *queue;
208
209 /* Total Number of queued bios on READ and WRITE lists */
210 unsigned int nr_queued[2];
211
212 unsigned int throtl_slice;
213
214 /* Work for dispatching throttled bios */
215 struct work_struct dispatch_work;
216 unsigned int limit_index;
217 bool limit_valid[LIMIT_CNT];
218
219 unsigned long low_upgrade_time;
220 unsigned long low_downgrade_time;
221
222 unsigned int scale;
223
224 struct latency_bucket tmp_buckets[2][LATENCY_BUCKET_SIZE];
225 struct avg_latency_bucket avg_buckets[2][LATENCY_BUCKET_SIZE];
226 struct latency_bucket __percpu *latency_buckets[2];
227 unsigned long last_calculate_time;
228 unsigned long filtered_latency;
229
230 bool track_bio_latency;
231 };
232
233 static void throtl_pending_timer_fn(struct timer_list *t);
234
pd_to_tg(struct blkg_policy_data * pd)235 static inline struct throtl_grp *pd_to_tg(struct blkg_policy_data *pd)
236 {
237 return pd ? container_of(pd, struct throtl_grp, pd) : NULL;
238 }
239
blkg_to_tg(struct blkcg_gq * blkg)240 static inline struct throtl_grp *blkg_to_tg(struct blkcg_gq *blkg)
241 {
242 return pd_to_tg(blkg_to_pd(blkg, &blkcg_policy_throtl));
243 }
244
tg_to_blkg(struct throtl_grp * tg)245 static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg)
246 {
247 return pd_to_blkg(&tg->pd);
248 }
249
250 /**
251 * sq_to_tg - return the throl_grp the specified service queue belongs to
252 * @sq: the throtl_service_queue of interest
253 *
254 * Return the throtl_grp @sq belongs to. If @sq is the top-level one
255 * embedded in throtl_data, %NULL is returned.
256 */
sq_to_tg(struct throtl_service_queue * sq)257 static struct throtl_grp *sq_to_tg(struct throtl_service_queue *sq)
258 {
259 if (sq && sq->parent_sq)
260 return container_of(sq, struct throtl_grp, service_queue);
261 else
262 return NULL;
263 }
264
265 /**
266 * sq_to_td - return throtl_data the specified service queue belongs to
267 * @sq: the throtl_service_queue of interest
268 *
269 * A service_queue can be embedded in either a throtl_grp or throtl_data.
270 * Determine the associated throtl_data accordingly and return it.
271 */
sq_to_td(struct throtl_service_queue * sq)272 static struct throtl_data *sq_to_td(struct throtl_service_queue *sq)
273 {
274 struct throtl_grp *tg = sq_to_tg(sq);
275
276 if (tg)
277 return tg->td;
278 else
279 return container_of(sq, struct throtl_data, service_queue);
280 }
281
282 /*
283 * cgroup's limit in LIMIT_MAX is scaled if low limit is set. This scale is to
284 * make the IO dispatch more smooth.
285 * Scale up: linearly scale up according to lapsed time since upgrade. For
286 * every throtl_slice, the limit scales up 1/2 .low limit till the
287 * limit hits .max limit
288 * Scale down: exponentially scale down if a cgroup doesn't hit its .low limit
289 */
throtl_adjusted_limit(uint64_t low,struct throtl_data * td)290 static uint64_t throtl_adjusted_limit(uint64_t low, struct throtl_data *td)
291 {
292 /* arbitrary value to avoid too big scale */
293 if (td->scale < 4096 && time_after_eq(jiffies,
294 td->low_upgrade_time + td->scale * td->throtl_slice))
295 td->scale = (jiffies - td->low_upgrade_time) / td->throtl_slice;
296
297 return low + (low >> 1) * td->scale;
298 }
299
tg_bps_limit(struct throtl_grp * tg,int rw)300 static uint64_t tg_bps_limit(struct throtl_grp *tg, int rw)
301 {
302 struct blkcg_gq *blkg = tg_to_blkg(tg);
303 struct throtl_data *td;
304 uint64_t ret;
305
306 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
307 return U64_MAX;
308
309 td = tg->td;
310 ret = tg->bps[rw][td->limit_index];
311 if (ret == 0 && td->limit_index == LIMIT_LOW) {
312 /* intermediate node or iops isn't 0 */
313 if (!list_empty(&blkg->blkcg->css.children) ||
314 tg->iops[rw][td->limit_index])
315 return U64_MAX;
316 else
317 return MIN_THROTL_BPS;
318 }
319
320 if (td->limit_index == LIMIT_MAX && tg->bps[rw][LIMIT_LOW] &&
321 tg->bps[rw][LIMIT_LOW] != tg->bps[rw][LIMIT_MAX]) {
322 uint64_t adjusted;
323
324 adjusted = throtl_adjusted_limit(tg->bps[rw][LIMIT_LOW], td);
325 ret = min(tg->bps[rw][LIMIT_MAX], adjusted);
326 }
327 return ret;
328 }
329
tg_iops_limit(struct throtl_grp * tg,int rw)330 static unsigned int tg_iops_limit(struct throtl_grp *tg, int rw)
331 {
332 struct blkcg_gq *blkg = tg_to_blkg(tg);
333 struct throtl_data *td;
334 unsigned int ret;
335
336 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
337 return UINT_MAX;
338
339 td = tg->td;
340 ret = tg->iops[rw][td->limit_index];
341 if (ret == 0 && tg->td->limit_index == LIMIT_LOW) {
342 /* intermediate node or bps isn't 0 */
343 if (!list_empty(&blkg->blkcg->css.children) ||
344 tg->bps[rw][td->limit_index])
345 return UINT_MAX;
346 else
347 return MIN_THROTL_IOPS;
348 }
349
350 if (td->limit_index == LIMIT_MAX && tg->iops[rw][LIMIT_LOW] &&
351 tg->iops[rw][LIMIT_LOW] != tg->iops[rw][LIMIT_MAX]) {
352 uint64_t adjusted;
353
354 adjusted = throtl_adjusted_limit(tg->iops[rw][LIMIT_LOW], td);
355 if (adjusted > UINT_MAX)
356 adjusted = UINT_MAX;
357 ret = min_t(unsigned int, tg->iops[rw][LIMIT_MAX], adjusted);
358 }
359 return ret;
360 }
361
362 #define request_bucket_index(sectors) \
363 clamp_t(int, order_base_2(sectors) - 3, 0, LATENCY_BUCKET_SIZE - 1)
364
365 /**
366 * throtl_log - log debug message via blktrace
367 * @sq: the service_queue being reported
368 * @fmt: printf format string
369 * @args: printf args
370 *
371 * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a
372 * throtl_grp; otherwise, just "throtl".
373 */
374 #define throtl_log(sq, fmt, args...) do { \
375 struct throtl_grp *__tg = sq_to_tg((sq)); \
376 struct throtl_data *__td = sq_to_td((sq)); \
377 \
378 (void)__td; \
379 if (likely(!blk_trace_note_message_enabled(__td->queue))) \
380 break; \
381 if ((__tg)) { \
382 blk_add_cgroup_trace_msg(__td->queue, \
383 tg_to_blkg(__tg)->blkcg, "throtl " fmt, ##args);\
384 } else { \
385 blk_add_trace_msg(__td->queue, "throtl " fmt, ##args); \
386 } \
387 } while (0)
388
throtl_bio_data_size(struct bio * bio)389 static inline unsigned int throtl_bio_data_size(struct bio *bio)
390 {
391 /* assume it's one sector */
392 if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
393 return 512;
394 return bio->bi_iter.bi_size;
395 }
396
throtl_qnode_init(struct throtl_qnode * qn,struct throtl_grp * tg)397 static void throtl_qnode_init(struct throtl_qnode *qn, struct throtl_grp *tg)
398 {
399 INIT_LIST_HEAD(&qn->node);
400 bio_list_init(&qn->bios);
401 qn->tg = tg;
402 }
403
404 /**
405 * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it
406 * @bio: bio being added
407 * @qn: qnode to add bio to
408 * @queued: the service_queue->queued[] list @qn belongs to
409 *
410 * Add @bio to @qn and put @qn on @queued if it's not already on.
411 * @qn->tg's reference count is bumped when @qn is activated. See the
412 * comment on top of throtl_qnode definition for details.
413 */
throtl_qnode_add_bio(struct bio * bio,struct throtl_qnode * qn,struct list_head * queued)414 static void throtl_qnode_add_bio(struct bio *bio, struct throtl_qnode *qn,
415 struct list_head *queued)
416 {
417 bio_list_add(&qn->bios, bio);
418 if (list_empty(&qn->node)) {
419 list_add_tail(&qn->node, queued);
420 blkg_get(tg_to_blkg(qn->tg));
421 }
422 }
423
424 /**
425 * throtl_peek_queued - peek the first bio on a qnode list
426 * @queued: the qnode list to peek
427 */
throtl_peek_queued(struct list_head * queued)428 static struct bio *throtl_peek_queued(struct list_head *queued)
429 {
430 struct throtl_qnode *qn;
431 struct bio *bio;
432
433 if (list_empty(queued))
434 return NULL;
435
436 qn = list_first_entry(queued, struct throtl_qnode, node);
437 bio = bio_list_peek(&qn->bios);
438 WARN_ON_ONCE(!bio);
439 return bio;
440 }
441
442 /**
443 * throtl_pop_queued - pop the first bio form a qnode list
444 * @queued: the qnode list to pop a bio from
445 * @tg_to_put: optional out argument for throtl_grp to put
446 *
447 * Pop the first bio from the qnode list @queued. After popping, the first
448 * qnode is removed from @queued if empty or moved to the end of @queued so
449 * that the popping order is round-robin.
450 *
451 * When the first qnode is removed, its associated throtl_grp should be put
452 * too. If @tg_to_put is NULL, this function automatically puts it;
453 * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is
454 * responsible for putting it.
455 */
throtl_pop_queued(struct list_head * queued,struct throtl_grp ** tg_to_put)456 static struct bio *throtl_pop_queued(struct list_head *queued,
457 struct throtl_grp **tg_to_put)
458 {
459 struct throtl_qnode *qn;
460 struct bio *bio;
461
462 if (list_empty(queued))
463 return NULL;
464
465 qn = list_first_entry(queued, struct throtl_qnode, node);
466 bio = bio_list_pop(&qn->bios);
467 WARN_ON_ONCE(!bio);
468
469 if (bio_list_empty(&qn->bios)) {
470 list_del_init(&qn->node);
471 if (tg_to_put)
472 *tg_to_put = qn->tg;
473 else
474 blkg_put(tg_to_blkg(qn->tg));
475 } else {
476 list_move_tail(&qn->node, queued);
477 }
478
479 return bio;
480 }
481
482 /* init a service_queue, assumes the caller zeroed it */
throtl_service_queue_init(struct throtl_service_queue * sq)483 static void throtl_service_queue_init(struct throtl_service_queue *sq)
484 {
485 INIT_LIST_HEAD(&sq->queued[0]);
486 INIT_LIST_HEAD(&sq->queued[1]);
487 sq->pending_tree = RB_ROOT_CACHED;
488 timer_setup(&sq->pending_timer, throtl_pending_timer_fn, 0);
489 }
490
throtl_pd_alloc(gfp_t gfp,struct request_queue * q,struct blkcg * blkcg)491 static struct blkg_policy_data *throtl_pd_alloc(gfp_t gfp,
492 struct request_queue *q,
493 struct blkcg *blkcg)
494 {
495 struct throtl_grp *tg;
496 int rw;
497
498 tg = kzalloc_node(sizeof(*tg), gfp, q->node);
499 if (!tg)
500 return NULL;
501
502 if (blkg_rwstat_init(&tg->stat_bytes, gfp))
503 goto err_free_tg;
504
505 if (blkg_rwstat_init(&tg->stat_ios, gfp))
506 goto err_exit_stat_bytes;
507
508 throtl_service_queue_init(&tg->service_queue);
509
510 for (rw = READ; rw <= WRITE; rw++) {
511 throtl_qnode_init(&tg->qnode_on_self[rw], tg);
512 throtl_qnode_init(&tg->qnode_on_parent[rw], tg);
513 }
514
515 RB_CLEAR_NODE(&tg->rb_node);
516 tg->bps[READ][LIMIT_MAX] = U64_MAX;
517 tg->bps[WRITE][LIMIT_MAX] = U64_MAX;
518 tg->iops[READ][LIMIT_MAX] = UINT_MAX;
519 tg->iops[WRITE][LIMIT_MAX] = UINT_MAX;
520 tg->bps_conf[READ][LIMIT_MAX] = U64_MAX;
521 tg->bps_conf[WRITE][LIMIT_MAX] = U64_MAX;
522 tg->iops_conf[READ][LIMIT_MAX] = UINT_MAX;
523 tg->iops_conf[WRITE][LIMIT_MAX] = UINT_MAX;
524 /* LIMIT_LOW will have default value 0 */
525
526 tg->latency_target = DFL_LATENCY_TARGET;
527 tg->latency_target_conf = DFL_LATENCY_TARGET;
528 tg->idletime_threshold = DFL_IDLE_THRESHOLD;
529 tg->idletime_threshold_conf = DFL_IDLE_THRESHOLD;
530
531 return &tg->pd;
532
533 err_exit_stat_bytes:
534 blkg_rwstat_exit(&tg->stat_bytes);
535 err_free_tg:
536 kfree(tg);
537 return NULL;
538 }
539
throtl_pd_init(struct blkg_policy_data * pd)540 static void throtl_pd_init(struct blkg_policy_data *pd)
541 {
542 struct throtl_grp *tg = pd_to_tg(pd);
543 struct blkcg_gq *blkg = tg_to_blkg(tg);
544 struct throtl_data *td = blkg->q->td;
545 struct throtl_service_queue *sq = &tg->service_queue;
546
547 /*
548 * If on the default hierarchy, we switch to properly hierarchical
549 * behavior where limits on a given throtl_grp are applied to the
550 * whole subtree rather than just the group itself. e.g. If 16M
551 * read_bps limit is set on the root group, the whole system can't
552 * exceed 16M for the device.
553 *
554 * If not on the default hierarchy, the broken flat hierarchy
555 * behavior is retained where all throtl_grps are treated as if
556 * they're all separate root groups right below throtl_data.
557 * Limits of a group don't interact with limits of other groups
558 * regardless of the position of the group in the hierarchy.
559 */
560 sq->parent_sq = &td->service_queue;
561 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && blkg->parent)
562 sq->parent_sq = &blkg_to_tg(blkg->parent)->service_queue;
563 tg->td = td;
564 }
565
566 /*
567 * Set has_rules[] if @tg or any of its parents have limits configured.
568 * This doesn't require walking up to the top of the hierarchy as the
569 * parent's has_rules[] is guaranteed to be correct.
570 */
tg_update_has_rules(struct throtl_grp * tg)571 static void tg_update_has_rules(struct throtl_grp *tg)
572 {
573 struct throtl_grp *parent_tg = sq_to_tg(tg->service_queue.parent_sq);
574 struct throtl_data *td = tg->td;
575 int rw;
576
577 for (rw = READ; rw <= WRITE; rw++)
578 tg->has_rules[rw] = (parent_tg && parent_tg->has_rules[rw]) ||
579 (td->limit_valid[td->limit_index] &&
580 (tg_bps_limit(tg, rw) != U64_MAX ||
581 tg_iops_limit(tg, rw) != UINT_MAX));
582 }
583
throtl_pd_online(struct blkg_policy_data * pd)584 static void throtl_pd_online(struct blkg_policy_data *pd)
585 {
586 struct throtl_grp *tg = pd_to_tg(pd);
587 /*
588 * We don't want new groups to escape the limits of its ancestors.
589 * Update has_rules[] after a new group is brought online.
590 */
591 tg_update_has_rules(tg);
592 }
593
blk_throtl_update_limit_valid(struct throtl_data * td)594 static void blk_throtl_update_limit_valid(struct throtl_data *td)
595 {
596 struct cgroup_subsys_state *pos_css;
597 struct blkcg_gq *blkg;
598 bool low_valid = false;
599
600 rcu_read_lock();
601 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
602 struct throtl_grp *tg = blkg_to_tg(blkg);
603
604 if (tg->bps[READ][LIMIT_LOW] || tg->bps[WRITE][LIMIT_LOW] ||
605 tg->iops[READ][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) {
606 low_valid = true;
607 break;
608 }
609 }
610 rcu_read_unlock();
611
612 td->limit_valid[LIMIT_LOW] = low_valid;
613 }
614
615 static void throtl_upgrade_state(struct throtl_data *td);
throtl_pd_offline(struct blkg_policy_data * pd)616 static void throtl_pd_offline(struct blkg_policy_data *pd)
617 {
618 struct throtl_grp *tg = pd_to_tg(pd);
619
620 tg->bps[READ][LIMIT_LOW] = 0;
621 tg->bps[WRITE][LIMIT_LOW] = 0;
622 tg->iops[READ][LIMIT_LOW] = 0;
623 tg->iops[WRITE][LIMIT_LOW] = 0;
624
625 blk_throtl_update_limit_valid(tg->td);
626
627 if (!tg->td->limit_valid[tg->td->limit_index])
628 throtl_upgrade_state(tg->td);
629 }
630
throtl_pd_free(struct blkg_policy_data * pd)631 static void throtl_pd_free(struct blkg_policy_data *pd)
632 {
633 struct throtl_grp *tg = pd_to_tg(pd);
634
635 del_timer_sync(&tg->service_queue.pending_timer);
636 blkg_rwstat_exit(&tg->stat_bytes);
637 blkg_rwstat_exit(&tg->stat_ios);
638 kfree(tg);
639 }
640
641 static struct throtl_grp *
throtl_rb_first(struct throtl_service_queue * parent_sq)642 throtl_rb_first(struct throtl_service_queue *parent_sq)
643 {
644 struct rb_node *n;
645
646 n = rb_first_cached(&parent_sq->pending_tree);
647 WARN_ON_ONCE(!n);
648 if (!n)
649 return NULL;
650 return rb_entry_tg(n);
651 }
652
throtl_rb_erase(struct rb_node * n,struct throtl_service_queue * parent_sq)653 static void throtl_rb_erase(struct rb_node *n,
654 struct throtl_service_queue *parent_sq)
655 {
656 rb_erase_cached(n, &parent_sq->pending_tree);
657 RB_CLEAR_NODE(n);
658 --parent_sq->nr_pending;
659 }
660
update_min_dispatch_time(struct throtl_service_queue * parent_sq)661 static void update_min_dispatch_time(struct throtl_service_queue *parent_sq)
662 {
663 struct throtl_grp *tg;
664
665 tg = throtl_rb_first(parent_sq);
666 if (!tg)
667 return;
668
669 parent_sq->first_pending_disptime = tg->disptime;
670 }
671
tg_service_queue_add(struct throtl_grp * tg)672 static void tg_service_queue_add(struct throtl_grp *tg)
673 {
674 struct throtl_service_queue *parent_sq = tg->service_queue.parent_sq;
675 struct rb_node **node = &parent_sq->pending_tree.rb_root.rb_node;
676 struct rb_node *parent = NULL;
677 struct throtl_grp *__tg;
678 unsigned long key = tg->disptime;
679 bool leftmost = true;
680
681 while (*node != NULL) {
682 parent = *node;
683 __tg = rb_entry_tg(parent);
684
685 if (time_before(key, __tg->disptime))
686 node = &parent->rb_left;
687 else {
688 node = &parent->rb_right;
689 leftmost = false;
690 }
691 }
692
693 rb_link_node(&tg->rb_node, parent, node);
694 rb_insert_color_cached(&tg->rb_node, &parent_sq->pending_tree,
695 leftmost);
696 }
697
throtl_enqueue_tg(struct throtl_grp * tg)698 static void throtl_enqueue_tg(struct throtl_grp *tg)
699 {
700 if (!(tg->flags & THROTL_TG_PENDING)) {
701 tg_service_queue_add(tg);
702 tg->flags |= THROTL_TG_PENDING;
703 tg->service_queue.parent_sq->nr_pending++;
704 }
705 }
706
throtl_dequeue_tg(struct throtl_grp * tg)707 static void throtl_dequeue_tg(struct throtl_grp *tg)
708 {
709 if (tg->flags & THROTL_TG_PENDING) {
710 throtl_rb_erase(&tg->rb_node, tg->service_queue.parent_sq);
711 tg->flags &= ~THROTL_TG_PENDING;
712 }
713 }
714
715 /* Call with queue lock held */
throtl_schedule_pending_timer(struct throtl_service_queue * sq,unsigned long expires)716 static void throtl_schedule_pending_timer(struct throtl_service_queue *sq,
717 unsigned long expires)
718 {
719 unsigned long max_expire = jiffies + 8 * sq_to_td(sq)->throtl_slice;
720
721 /*
722 * Since we are adjusting the throttle limit dynamically, the sleep
723 * time calculated according to previous limit might be invalid. It's
724 * possible the cgroup sleep time is very long and no other cgroups
725 * have IO running so notify the limit changes. Make sure the cgroup
726 * doesn't sleep too long to avoid the missed notification.
727 */
728 if (time_after(expires, max_expire))
729 expires = max_expire;
730 mod_timer(&sq->pending_timer, expires);
731 throtl_log(sq, "schedule timer. delay=%lu jiffies=%lu",
732 expires - jiffies, jiffies);
733 }
734
735 /**
736 * throtl_schedule_next_dispatch - schedule the next dispatch cycle
737 * @sq: the service_queue to schedule dispatch for
738 * @force: force scheduling
739 *
740 * Arm @sq->pending_timer so that the next dispatch cycle starts on the
741 * dispatch time of the first pending child. Returns %true if either timer
742 * is armed or there's no pending child left. %false if the current
743 * dispatch window is still open and the caller should continue
744 * dispatching.
745 *
746 * If @force is %true, the dispatch timer is always scheduled and this
747 * function is guaranteed to return %true. This is to be used when the
748 * caller can't dispatch itself and needs to invoke pending_timer
749 * unconditionally. Note that forced scheduling is likely to induce short
750 * delay before dispatch starts even if @sq->first_pending_disptime is not
751 * in the future and thus shouldn't be used in hot paths.
752 */
throtl_schedule_next_dispatch(struct throtl_service_queue * sq,bool force)753 static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq,
754 bool force)
755 {
756 /* any pending children left? */
757 if (!sq->nr_pending)
758 return true;
759
760 update_min_dispatch_time(sq);
761
762 /* is the next dispatch time in the future? */
763 if (force || time_after(sq->first_pending_disptime, jiffies)) {
764 throtl_schedule_pending_timer(sq, sq->first_pending_disptime);
765 return true;
766 }
767
768 /* tell the caller to continue dispatching */
769 return false;
770 }
771
throtl_start_new_slice_with_credit(struct throtl_grp * tg,bool rw,unsigned long start)772 static inline void throtl_start_new_slice_with_credit(struct throtl_grp *tg,
773 bool rw, unsigned long start)
774 {
775 tg->bytes_disp[rw] = 0;
776 tg->io_disp[rw] = 0;
777
778 atomic_set(&tg->io_split_cnt[rw], 0);
779
780 /*
781 * Previous slice has expired. We must have trimmed it after last
782 * bio dispatch. That means since start of last slice, we never used
783 * that bandwidth. Do try to make use of that bandwidth while giving
784 * credit.
785 */
786 if (time_after_eq(start, tg->slice_start[rw]))
787 tg->slice_start[rw] = start;
788
789 tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
790 throtl_log(&tg->service_queue,
791 "[%c] new slice with credit start=%lu end=%lu jiffies=%lu",
792 rw == READ ? 'R' : 'W', tg->slice_start[rw],
793 tg->slice_end[rw], jiffies);
794 }
795
throtl_start_new_slice(struct throtl_grp * tg,bool rw)796 static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw)
797 {
798 tg->bytes_disp[rw] = 0;
799 tg->io_disp[rw] = 0;
800 tg->slice_start[rw] = jiffies;
801 tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
802
803 atomic_set(&tg->io_split_cnt[rw], 0);
804
805 throtl_log(&tg->service_queue,
806 "[%c] new slice start=%lu end=%lu jiffies=%lu",
807 rw == READ ? 'R' : 'W', tg->slice_start[rw],
808 tg->slice_end[rw], jiffies);
809 }
810
throtl_set_slice_end(struct throtl_grp * tg,bool rw,unsigned long jiffy_end)811 static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw,
812 unsigned long jiffy_end)
813 {
814 tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice);
815 }
816
throtl_extend_slice(struct throtl_grp * tg,bool rw,unsigned long jiffy_end)817 static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw,
818 unsigned long jiffy_end)
819 {
820 throtl_set_slice_end(tg, rw, jiffy_end);
821 throtl_log(&tg->service_queue,
822 "[%c] extend slice start=%lu end=%lu jiffies=%lu",
823 rw == READ ? 'R' : 'W', tg->slice_start[rw],
824 tg->slice_end[rw], jiffies);
825 }
826
827 /* Determine if previously allocated or extended slice is complete or not */
throtl_slice_used(struct throtl_grp * tg,bool rw)828 static bool throtl_slice_used(struct throtl_grp *tg, bool rw)
829 {
830 if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
831 return false;
832
833 return true;
834 }
835
836 /* Trim the used slices and adjust slice start accordingly */
throtl_trim_slice(struct throtl_grp * tg,bool rw)837 static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw)
838 {
839 unsigned long nr_slices, time_elapsed, io_trim;
840 u64 bytes_trim, tmp;
841
842 BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));
843
844 /*
845 * If bps are unlimited (-1), then time slice don't get
846 * renewed. Don't try to trim the slice if slice is used. A new
847 * slice will start when appropriate.
848 */
849 if (throtl_slice_used(tg, rw))
850 return;
851
852 /*
853 * A bio has been dispatched. Also adjust slice_end. It might happen
854 * that initially cgroup limit was very low resulting in high
855 * slice_end, but later limit was bumped up and bio was dispatched
856 * sooner, then we need to reduce slice_end. A high bogus slice_end
857 * is bad because it does not allow new slice to start.
858 */
859
860 throtl_set_slice_end(tg, rw, jiffies + tg->td->throtl_slice);
861
862 time_elapsed = jiffies - tg->slice_start[rw];
863
864 nr_slices = time_elapsed / tg->td->throtl_slice;
865
866 if (!nr_slices)
867 return;
868 tmp = tg_bps_limit(tg, rw) * tg->td->throtl_slice * nr_slices;
869 do_div(tmp, HZ);
870 bytes_trim = tmp;
871
872 io_trim = (tg_iops_limit(tg, rw) * tg->td->throtl_slice * nr_slices) /
873 HZ;
874
875 if (!bytes_trim && !io_trim)
876 return;
877
878 if (tg->bytes_disp[rw] >= bytes_trim)
879 tg->bytes_disp[rw] -= bytes_trim;
880 else
881 tg->bytes_disp[rw] = 0;
882
883 if (tg->io_disp[rw] >= io_trim)
884 tg->io_disp[rw] -= io_trim;
885 else
886 tg->io_disp[rw] = 0;
887
888 tg->slice_start[rw] += nr_slices * tg->td->throtl_slice;
889
890 throtl_log(&tg->service_queue,
891 "[%c] trim slice nr=%lu bytes=%llu io=%lu start=%lu end=%lu jiffies=%lu",
892 rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim,
893 tg->slice_start[rw], tg->slice_end[rw], jiffies);
894 }
895
tg_with_in_iops_limit(struct throtl_grp * tg,struct bio * bio,u32 iops_limit,unsigned long * wait)896 static bool tg_with_in_iops_limit(struct throtl_grp *tg, struct bio *bio,
897 u32 iops_limit, unsigned long *wait)
898 {
899 bool rw = bio_data_dir(bio);
900 unsigned int io_allowed;
901 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
902 u64 tmp;
903
904 if (iops_limit == UINT_MAX) {
905 if (wait)
906 *wait = 0;
907 return true;
908 }
909
910 jiffy_elapsed = jiffies - tg->slice_start[rw];
911
912 /* Round up to the next throttle slice, wait time must be nonzero */
913 jiffy_elapsed_rnd = roundup(jiffy_elapsed + 1, tg->td->throtl_slice);
914
915 /*
916 * jiffy_elapsed_rnd should not be a big value as minimum iops can be
917 * 1 then at max jiffy elapsed should be equivalent of 1 second as we
918 * will allow dispatch after 1 second and after that slice should
919 * have been trimmed.
920 */
921
922 tmp = (u64)iops_limit * jiffy_elapsed_rnd;
923 do_div(tmp, HZ);
924
925 if (tmp > UINT_MAX)
926 io_allowed = UINT_MAX;
927 else
928 io_allowed = tmp;
929
930 if (tg->io_disp[rw] + 1 <= io_allowed) {
931 if (wait)
932 *wait = 0;
933 return true;
934 }
935
936 /* Calc approx time to dispatch */
937 jiffy_wait = jiffy_elapsed_rnd - jiffy_elapsed;
938
939 if (wait)
940 *wait = jiffy_wait;
941 return false;
942 }
943
tg_with_in_bps_limit(struct throtl_grp * tg,struct bio * bio,u64 bps_limit,unsigned long * wait)944 static bool tg_with_in_bps_limit(struct throtl_grp *tg, struct bio *bio,
945 u64 bps_limit, unsigned long *wait)
946 {
947 bool rw = bio_data_dir(bio);
948 u64 bytes_allowed, extra_bytes, tmp;
949 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
950 unsigned int bio_size = throtl_bio_data_size(bio);
951
952 if (bps_limit == U64_MAX) {
953 if (wait)
954 *wait = 0;
955 return true;
956 }
957
958 jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
959
960 /* Slice has just started. Consider one slice interval */
961 if (!jiffy_elapsed)
962 jiffy_elapsed_rnd = tg->td->throtl_slice;
963
964 jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, tg->td->throtl_slice);
965
966 tmp = bps_limit * jiffy_elapsed_rnd;
967 do_div(tmp, HZ);
968 bytes_allowed = tmp;
969
970 if (tg->bytes_disp[rw] + bio_size <= bytes_allowed) {
971 if (wait)
972 *wait = 0;
973 return true;
974 }
975
976 /* Calc approx time to dispatch */
977 extra_bytes = tg->bytes_disp[rw] + bio_size - bytes_allowed;
978 jiffy_wait = div64_u64(extra_bytes * HZ, bps_limit);
979
980 if (!jiffy_wait)
981 jiffy_wait = 1;
982
983 /*
984 * This wait time is without taking into consideration the rounding
985 * up we did. Add that time also.
986 */
987 jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
988 if (wait)
989 *wait = jiffy_wait;
990 return false;
991 }
992
993 /*
994 * Returns whether one can dispatch a bio or not. Also returns approx number
995 * of jiffies to wait before this bio is with-in IO rate and can be dispatched
996 */
tg_may_dispatch(struct throtl_grp * tg,struct bio * bio,unsigned long * wait)997 static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio,
998 unsigned long *wait)
999 {
1000 bool rw = bio_data_dir(bio);
1001 unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;
1002 u64 bps_limit = tg_bps_limit(tg, rw);
1003 u32 iops_limit = tg_iops_limit(tg, rw);
1004
1005 /*
1006 * Currently whole state machine of group depends on first bio
1007 * queued in the group bio list. So one should not be calling
1008 * this function with a different bio if there are other bios
1009 * queued.
1010 */
1011 BUG_ON(tg->service_queue.nr_queued[rw] &&
1012 bio != throtl_peek_queued(&tg->service_queue.queued[rw]));
1013
1014 /* If tg->bps = -1, then BW is unlimited */
1015 if (bps_limit == U64_MAX && iops_limit == UINT_MAX) {
1016 if (wait)
1017 *wait = 0;
1018 return true;
1019 }
1020
1021 /*
1022 * If previous slice expired, start a new one otherwise renew/extend
1023 * existing slice to make sure it is at least throtl_slice interval
1024 * long since now. New slice is started only for empty throttle group.
1025 * If there is queued bio, that means there should be an active
1026 * slice and it should be extended instead.
1027 */
1028 if (throtl_slice_used(tg, rw) && !(tg->service_queue.nr_queued[rw]))
1029 throtl_start_new_slice(tg, rw);
1030 else {
1031 if (time_before(tg->slice_end[rw],
1032 jiffies + tg->td->throtl_slice))
1033 throtl_extend_slice(tg, rw,
1034 jiffies + tg->td->throtl_slice);
1035 }
1036
1037 if (iops_limit != UINT_MAX)
1038 tg->io_disp[rw] += atomic_xchg(&tg->io_split_cnt[rw], 0);
1039
1040 if (tg_with_in_bps_limit(tg, bio, bps_limit, &bps_wait) &&
1041 tg_with_in_iops_limit(tg, bio, iops_limit, &iops_wait)) {
1042 if (wait)
1043 *wait = 0;
1044 return true;
1045 }
1046
1047 max_wait = max(bps_wait, iops_wait);
1048
1049 if (wait)
1050 *wait = max_wait;
1051
1052 if (time_before(tg->slice_end[rw], jiffies + max_wait))
1053 throtl_extend_slice(tg, rw, jiffies + max_wait);
1054
1055 return false;
1056 }
1057
throtl_charge_bio(struct throtl_grp * tg,struct bio * bio)1058 static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
1059 {
1060 bool rw = bio_data_dir(bio);
1061 unsigned int bio_size = throtl_bio_data_size(bio);
1062
1063 /* Charge the bio to the group */
1064 tg->bytes_disp[rw] += bio_size;
1065 tg->io_disp[rw]++;
1066 tg->last_bytes_disp[rw] += bio_size;
1067 tg->last_io_disp[rw]++;
1068
1069 /*
1070 * BIO_THROTTLED is used to prevent the same bio to be throttled
1071 * more than once as a throttled bio will go through blk-throtl the
1072 * second time when it eventually gets issued. Set it when a bio
1073 * is being charged to a tg.
1074 */
1075 if (!bio_flagged(bio, BIO_THROTTLED))
1076 bio_set_flag(bio, BIO_THROTTLED);
1077 }
1078
1079 /**
1080 * throtl_add_bio_tg - add a bio to the specified throtl_grp
1081 * @bio: bio to add
1082 * @qn: qnode to use
1083 * @tg: the target throtl_grp
1084 *
1085 * Add @bio to @tg's service_queue using @qn. If @qn is not specified,
1086 * tg->qnode_on_self[] is used.
1087 */
throtl_add_bio_tg(struct bio * bio,struct throtl_qnode * qn,struct throtl_grp * tg)1088 static void throtl_add_bio_tg(struct bio *bio, struct throtl_qnode *qn,
1089 struct throtl_grp *tg)
1090 {
1091 struct throtl_service_queue *sq = &tg->service_queue;
1092 bool rw = bio_data_dir(bio);
1093
1094 if (!qn)
1095 qn = &tg->qnode_on_self[rw];
1096
1097 /*
1098 * If @tg doesn't currently have any bios queued in the same
1099 * direction, queueing @bio can change when @tg should be
1100 * dispatched. Mark that @tg was empty. This is automatically
1101 * cleared on the next tg_update_disptime().
1102 */
1103 if (!sq->nr_queued[rw])
1104 tg->flags |= THROTL_TG_WAS_EMPTY;
1105
1106 throtl_qnode_add_bio(bio, qn, &sq->queued[rw]);
1107
1108 sq->nr_queued[rw]++;
1109 throtl_enqueue_tg(tg);
1110 }
1111
tg_update_disptime(struct throtl_grp * tg)1112 static void tg_update_disptime(struct throtl_grp *tg)
1113 {
1114 struct throtl_service_queue *sq = &tg->service_queue;
1115 unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
1116 struct bio *bio;
1117
1118 bio = throtl_peek_queued(&sq->queued[READ]);
1119 if (bio)
1120 tg_may_dispatch(tg, bio, &read_wait);
1121
1122 bio = throtl_peek_queued(&sq->queued[WRITE]);
1123 if (bio)
1124 tg_may_dispatch(tg, bio, &write_wait);
1125
1126 min_wait = min(read_wait, write_wait);
1127 disptime = jiffies + min_wait;
1128
1129 /* Update dispatch time */
1130 throtl_dequeue_tg(tg);
1131 tg->disptime = disptime;
1132 throtl_enqueue_tg(tg);
1133
1134 /* see throtl_add_bio_tg() */
1135 tg->flags &= ~THROTL_TG_WAS_EMPTY;
1136 }
1137
start_parent_slice_with_credit(struct throtl_grp * child_tg,struct throtl_grp * parent_tg,bool rw)1138 static void start_parent_slice_with_credit(struct throtl_grp *child_tg,
1139 struct throtl_grp *parent_tg, bool rw)
1140 {
1141 if (throtl_slice_used(parent_tg, rw)) {
1142 throtl_start_new_slice_with_credit(parent_tg, rw,
1143 child_tg->slice_start[rw]);
1144 }
1145
1146 }
1147
tg_dispatch_one_bio(struct throtl_grp * tg,bool rw)1148 static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw)
1149 {
1150 struct throtl_service_queue *sq = &tg->service_queue;
1151 struct throtl_service_queue *parent_sq = sq->parent_sq;
1152 struct throtl_grp *parent_tg = sq_to_tg(parent_sq);
1153 struct throtl_grp *tg_to_put = NULL;
1154 struct bio *bio;
1155
1156 /*
1157 * @bio is being transferred from @tg to @parent_sq. Popping a bio
1158 * from @tg may put its reference and @parent_sq might end up
1159 * getting released prematurely. Remember the tg to put and put it
1160 * after @bio is transferred to @parent_sq.
1161 */
1162 bio = throtl_pop_queued(&sq->queued[rw], &tg_to_put);
1163 sq->nr_queued[rw]--;
1164
1165 throtl_charge_bio(tg, bio);
1166
1167 /*
1168 * If our parent is another tg, we just need to transfer @bio to
1169 * the parent using throtl_add_bio_tg(). If our parent is
1170 * @td->service_queue, @bio is ready to be issued. Put it on its
1171 * bio_lists[] and decrease total number queued. The caller is
1172 * responsible for issuing these bios.
1173 */
1174 if (parent_tg) {
1175 throtl_add_bio_tg(bio, &tg->qnode_on_parent[rw], parent_tg);
1176 start_parent_slice_with_credit(tg, parent_tg, rw);
1177 } else {
1178 throtl_qnode_add_bio(bio, &tg->qnode_on_parent[rw],
1179 &parent_sq->queued[rw]);
1180 BUG_ON(tg->td->nr_queued[rw] <= 0);
1181 tg->td->nr_queued[rw]--;
1182 }
1183
1184 throtl_trim_slice(tg, rw);
1185
1186 if (tg_to_put)
1187 blkg_put(tg_to_blkg(tg_to_put));
1188 }
1189
throtl_dispatch_tg(struct throtl_grp * tg)1190 static int throtl_dispatch_tg(struct throtl_grp *tg)
1191 {
1192 struct throtl_service_queue *sq = &tg->service_queue;
1193 unsigned int nr_reads = 0, nr_writes = 0;
1194 unsigned int max_nr_reads = THROTL_GRP_QUANTUM * 3 / 4;
1195 unsigned int max_nr_writes = THROTL_GRP_QUANTUM - max_nr_reads;
1196 struct bio *bio;
1197
1198 /* Try to dispatch 75% READS and 25% WRITES */
1199
1200 while ((bio = throtl_peek_queued(&sq->queued[READ])) &&
1201 tg_may_dispatch(tg, bio, NULL)) {
1202
1203 tg_dispatch_one_bio(tg, bio_data_dir(bio));
1204 nr_reads++;
1205
1206 if (nr_reads >= max_nr_reads)
1207 break;
1208 }
1209
1210 while ((bio = throtl_peek_queued(&sq->queued[WRITE])) &&
1211 tg_may_dispatch(tg, bio, NULL)) {
1212
1213 tg_dispatch_one_bio(tg, bio_data_dir(bio));
1214 nr_writes++;
1215
1216 if (nr_writes >= max_nr_writes)
1217 break;
1218 }
1219
1220 return nr_reads + nr_writes;
1221 }
1222
throtl_select_dispatch(struct throtl_service_queue * parent_sq)1223 static int throtl_select_dispatch(struct throtl_service_queue *parent_sq)
1224 {
1225 unsigned int nr_disp = 0;
1226
1227 while (1) {
1228 struct throtl_grp *tg;
1229 struct throtl_service_queue *sq;
1230
1231 if (!parent_sq->nr_pending)
1232 break;
1233
1234 tg = throtl_rb_first(parent_sq);
1235 if (!tg)
1236 break;
1237
1238 if (time_before(jiffies, tg->disptime))
1239 break;
1240
1241 throtl_dequeue_tg(tg);
1242
1243 nr_disp += throtl_dispatch_tg(tg);
1244
1245 sq = &tg->service_queue;
1246 if (sq->nr_queued[0] || sq->nr_queued[1])
1247 tg_update_disptime(tg);
1248
1249 if (nr_disp >= THROTL_QUANTUM)
1250 break;
1251 }
1252
1253 return nr_disp;
1254 }
1255
1256 static bool throtl_can_upgrade(struct throtl_data *td,
1257 struct throtl_grp *this_tg);
1258 /**
1259 * throtl_pending_timer_fn - timer function for service_queue->pending_timer
1260 * @t: the pending_timer member of the throtl_service_queue being serviced
1261 *
1262 * This timer is armed when a child throtl_grp with active bio's become
1263 * pending and queued on the service_queue's pending_tree and expires when
1264 * the first child throtl_grp should be dispatched. This function
1265 * dispatches bio's from the children throtl_grps to the parent
1266 * service_queue.
1267 *
1268 * If the parent's parent is another throtl_grp, dispatching is propagated
1269 * by either arming its pending_timer or repeating dispatch directly. If
1270 * the top-level service_tree is reached, throtl_data->dispatch_work is
1271 * kicked so that the ready bio's are issued.
1272 */
throtl_pending_timer_fn(struct timer_list * t)1273 static void throtl_pending_timer_fn(struct timer_list *t)
1274 {
1275 struct throtl_service_queue *sq = from_timer(sq, t, pending_timer);
1276 struct throtl_grp *tg = sq_to_tg(sq);
1277 struct throtl_data *td = sq_to_td(sq);
1278 struct request_queue *q = td->queue;
1279 struct throtl_service_queue *parent_sq;
1280 bool dispatched;
1281 int ret;
1282
1283 spin_lock_irq(&q->queue_lock);
1284 if (throtl_can_upgrade(td, NULL))
1285 throtl_upgrade_state(td);
1286
1287 again:
1288 parent_sq = sq->parent_sq;
1289 dispatched = false;
1290
1291 while (true) {
1292 throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u",
1293 sq->nr_queued[READ] + sq->nr_queued[WRITE],
1294 sq->nr_queued[READ], sq->nr_queued[WRITE]);
1295
1296 ret = throtl_select_dispatch(sq);
1297 if (ret) {
1298 throtl_log(sq, "bios disp=%u", ret);
1299 dispatched = true;
1300 }
1301
1302 if (throtl_schedule_next_dispatch(sq, false))
1303 break;
1304
1305 /* this dispatch windows is still open, relax and repeat */
1306 spin_unlock_irq(&q->queue_lock);
1307 cpu_relax();
1308 spin_lock_irq(&q->queue_lock);
1309 }
1310
1311 if (!dispatched)
1312 goto out_unlock;
1313
1314 if (parent_sq) {
1315 /* @parent_sq is another throl_grp, propagate dispatch */
1316 if (tg->flags & THROTL_TG_WAS_EMPTY) {
1317 tg_update_disptime(tg);
1318 if (!throtl_schedule_next_dispatch(parent_sq, false)) {
1319 /* window is already open, repeat dispatching */
1320 sq = parent_sq;
1321 tg = sq_to_tg(sq);
1322 goto again;
1323 }
1324 }
1325 } else {
1326 /* reached the top-level, queue issuing */
1327 queue_work(kthrotld_workqueue, &td->dispatch_work);
1328 }
1329 out_unlock:
1330 spin_unlock_irq(&q->queue_lock);
1331 }
1332
1333 /**
1334 * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work
1335 * @work: work item being executed
1336 *
1337 * This function is queued for execution when bios reach the bio_lists[]
1338 * of throtl_data->service_queue. Those bios are ready and issued by this
1339 * function.
1340 */
blk_throtl_dispatch_work_fn(struct work_struct * work)1341 static void blk_throtl_dispatch_work_fn(struct work_struct *work)
1342 {
1343 struct throtl_data *td = container_of(work, struct throtl_data,
1344 dispatch_work);
1345 struct throtl_service_queue *td_sq = &td->service_queue;
1346 struct request_queue *q = td->queue;
1347 struct bio_list bio_list_on_stack;
1348 struct bio *bio;
1349 struct blk_plug plug;
1350 int rw;
1351
1352 bio_list_init(&bio_list_on_stack);
1353
1354 spin_lock_irq(&q->queue_lock);
1355 for (rw = READ; rw <= WRITE; rw++)
1356 while ((bio = throtl_pop_queued(&td_sq->queued[rw], NULL)))
1357 bio_list_add(&bio_list_on_stack, bio);
1358 spin_unlock_irq(&q->queue_lock);
1359
1360 if (!bio_list_empty(&bio_list_on_stack)) {
1361 blk_start_plug(&plug);
1362 while ((bio = bio_list_pop(&bio_list_on_stack)))
1363 submit_bio_noacct(bio);
1364 blk_finish_plug(&plug);
1365 }
1366 }
1367
tg_prfill_conf_u64(struct seq_file * sf,struct blkg_policy_data * pd,int off)1368 static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd,
1369 int off)
1370 {
1371 struct throtl_grp *tg = pd_to_tg(pd);
1372 u64 v = *(u64 *)((void *)tg + off);
1373
1374 if (v == U64_MAX)
1375 return 0;
1376 return __blkg_prfill_u64(sf, pd, v);
1377 }
1378
tg_prfill_conf_uint(struct seq_file * sf,struct blkg_policy_data * pd,int off)1379 static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd,
1380 int off)
1381 {
1382 struct throtl_grp *tg = pd_to_tg(pd);
1383 unsigned int v = *(unsigned int *)((void *)tg + off);
1384
1385 if (v == UINT_MAX)
1386 return 0;
1387 return __blkg_prfill_u64(sf, pd, v);
1388 }
1389
tg_print_conf_u64(struct seq_file * sf,void * v)1390 static int tg_print_conf_u64(struct seq_file *sf, void *v)
1391 {
1392 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_u64,
1393 &blkcg_policy_throtl, seq_cft(sf)->private, false);
1394 return 0;
1395 }
1396
tg_print_conf_uint(struct seq_file * sf,void * v)1397 static int tg_print_conf_uint(struct seq_file *sf, void *v)
1398 {
1399 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_uint,
1400 &blkcg_policy_throtl, seq_cft(sf)->private, false);
1401 return 0;
1402 }
1403
tg_conf_updated(struct throtl_grp * tg,bool global)1404 static void tg_conf_updated(struct throtl_grp *tg, bool global)
1405 {
1406 struct throtl_service_queue *sq = &tg->service_queue;
1407 struct cgroup_subsys_state *pos_css;
1408 struct blkcg_gq *blkg;
1409
1410 throtl_log(&tg->service_queue,
1411 "limit change rbps=%llu wbps=%llu riops=%u wiops=%u",
1412 tg_bps_limit(tg, READ), tg_bps_limit(tg, WRITE),
1413 tg_iops_limit(tg, READ), tg_iops_limit(tg, WRITE));
1414
1415 /*
1416 * Update has_rules[] flags for the updated tg's subtree. A tg is
1417 * considered to have rules if either the tg itself or any of its
1418 * ancestors has rules. This identifies groups without any
1419 * restrictions in the whole hierarchy and allows them to bypass
1420 * blk-throttle.
1421 */
1422 blkg_for_each_descendant_pre(blkg, pos_css,
1423 global ? tg->td->queue->root_blkg : tg_to_blkg(tg)) {
1424 struct throtl_grp *this_tg = blkg_to_tg(blkg);
1425 struct throtl_grp *parent_tg;
1426
1427 tg_update_has_rules(this_tg);
1428 /* ignore root/second level */
1429 if (!cgroup_subsys_on_dfl(io_cgrp_subsys) || !blkg->parent ||
1430 !blkg->parent->parent)
1431 continue;
1432 parent_tg = blkg_to_tg(blkg->parent);
1433 /*
1434 * make sure all children has lower idle time threshold and
1435 * higher latency target
1436 */
1437 this_tg->idletime_threshold = min(this_tg->idletime_threshold,
1438 parent_tg->idletime_threshold);
1439 this_tg->latency_target = max(this_tg->latency_target,
1440 parent_tg->latency_target);
1441 }
1442
1443 /*
1444 * We're already holding queue_lock and know @tg is valid. Let's
1445 * apply the new config directly.
1446 *
1447 * Restart the slices for both READ and WRITES. It might happen
1448 * that a group's limit are dropped suddenly and we don't want to
1449 * account recently dispatched IO with new low rate.
1450 */
1451 throtl_start_new_slice(tg, READ);
1452 throtl_start_new_slice(tg, WRITE);
1453
1454 if (tg->flags & THROTL_TG_PENDING) {
1455 tg_update_disptime(tg);
1456 throtl_schedule_next_dispatch(sq->parent_sq, true);
1457 }
1458 }
1459
throtl_check_init_done(struct request_queue * q)1460 static inline int throtl_check_init_done(struct request_queue *q)
1461 {
1462 if (test_bit(QUEUE_FLAG_THROTL_INIT_DONE, &q->queue_flags))
1463 return 0;
1464
1465 return blk_queue_dying(q) ? -ENODEV : -EBUSY;
1466 }
1467
1468 /*
1469 * If throtl_check_init_done() return -EBUSY, we should retry after a short
1470 * msleep(), since that throttle init will be completed in blk_register_queue()
1471 * soon.
1472 */
throtl_restart_syscall_when_busy(int errno)1473 static inline int throtl_restart_syscall_when_busy(int errno)
1474 {
1475 int ret = errno;
1476
1477 if (ret == -EBUSY) {
1478 msleep(10);
1479 ret = restart_syscall();
1480 }
1481
1482 return ret;
1483 }
1484
tg_set_conf(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off,bool is_u64)1485 static ssize_t tg_set_conf(struct kernfs_open_file *of,
1486 char *buf, size_t nbytes, loff_t off, bool is_u64)
1487 {
1488 struct blkcg *blkcg = css_to_blkcg(of_css(of));
1489 struct blkg_conf_ctx ctx;
1490 struct throtl_grp *tg;
1491 int ret;
1492 u64 v;
1493
1494 ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1495 if (ret)
1496 return ret;
1497
1498 ret = throtl_check_init_done(ctx.disk->queue);
1499 if (ret)
1500 goto out_finish;
1501
1502 ret = -EINVAL;
1503 if (sscanf(ctx.body, "%llu", &v) != 1)
1504 goto out_finish;
1505 if (!v)
1506 v = U64_MAX;
1507
1508 tg = blkg_to_tg(ctx.blkg);
1509
1510 if (is_u64)
1511 *(u64 *)((void *)tg + of_cft(of)->private) = v;
1512 else
1513 *(unsigned int *)((void *)tg + of_cft(of)->private) = v;
1514
1515 tg_conf_updated(tg, false);
1516 ret = 0;
1517 out_finish:
1518 blkg_conf_finish(&ctx);
1519 ret = throtl_restart_syscall_when_busy(ret);
1520 return ret ?: nbytes;
1521 }
1522
tg_set_conf_u64(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)1523 static ssize_t tg_set_conf_u64(struct kernfs_open_file *of,
1524 char *buf, size_t nbytes, loff_t off)
1525 {
1526 return tg_set_conf(of, buf, nbytes, off, true);
1527 }
1528
tg_set_conf_uint(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)1529 static ssize_t tg_set_conf_uint(struct kernfs_open_file *of,
1530 char *buf, size_t nbytes, loff_t off)
1531 {
1532 return tg_set_conf(of, buf, nbytes, off, false);
1533 }
1534
tg_print_rwstat(struct seq_file * sf,void * v)1535 static int tg_print_rwstat(struct seq_file *sf, void *v)
1536 {
1537 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1538 blkg_prfill_rwstat, &blkcg_policy_throtl,
1539 seq_cft(sf)->private, true);
1540 return 0;
1541 }
1542
tg_prfill_rwstat_recursive(struct seq_file * sf,struct blkg_policy_data * pd,int off)1543 static u64 tg_prfill_rwstat_recursive(struct seq_file *sf,
1544 struct blkg_policy_data *pd, int off)
1545 {
1546 struct blkg_rwstat_sample sum;
1547
1548 blkg_rwstat_recursive_sum(pd_to_blkg(pd), &blkcg_policy_throtl, off,
1549 &sum);
1550 return __blkg_prfill_rwstat(sf, pd, &sum);
1551 }
1552
tg_print_rwstat_recursive(struct seq_file * sf,void * v)1553 static int tg_print_rwstat_recursive(struct seq_file *sf, void *v)
1554 {
1555 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)),
1556 tg_prfill_rwstat_recursive, &blkcg_policy_throtl,
1557 seq_cft(sf)->private, true);
1558 return 0;
1559 }
1560
1561 static struct cftype throtl_legacy_files[] = {
1562 {
1563 .name = "throttle.read_bps_device",
1564 .private = offsetof(struct throtl_grp, bps[READ][LIMIT_MAX]),
1565 .seq_show = tg_print_conf_u64,
1566 .write = tg_set_conf_u64,
1567 },
1568 {
1569 .name = "throttle.write_bps_device",
1570 .private = offsetof(struct throtl_grp, bps[WRITE][LIMIT_MAX]),
1571 .seq_show = tg_print_conf_u64,
1572 .write = tg_set_conf_u64,
1573 },
1574 {
1575 .name = "throttle.read_iops_device",
1576 .private = offsetof(struct throtl_grp, iops[READ][LIMIT_MAX]),
1577 .seq_show = tg_print_conf_uint,
1578 .write = tg_set_conf_uint,
1579 },
1580 {
1581 .name = "throttle.write_iops_device",
1582 .private = offsetof(struct throtl_grp, iops[WRITE][LIMIT_MAX]),
1583 .seq_show = tg_print_conf_uint,
1584 .write = tg_set_conf_uint,
1585 },
1586 {
1587 .name = "throttle.io_service_bytes",
1588 .private = offsetof(struct throtl_grp, stat_bytes),
1589 .seq_show = tg_print_rwstat,
1590 },
1591 {
1592 .name = "throttle.io_service_bytes_recursive",
1593 .private = offsetof(struct throtl_grp, stat_bytes),
1594 .seq_show = tg_print_rwstat_recursive,
1595 },
1596 {
1597 .name = "throttle.io_serviced",
1598 .private = offsetof(struct throtl_grp, stat_ios),
1599 .seq_show = tg_print_rwstat,
1600 },
1601 {
1602 .name = "throttle.io_serviced_recursive",
1603 .private = offsetof(struct throtl_grp, stat_ios),
1604 .seq_show = tg_print_rwstat_recursive,
1605 },
1606 { } /* terminate */
1607 };
1608
tg_prfill_limit(struct seq_file * sf,struct blkg_policy_data * pd,int off)1609 static u64 tg_prfill_limit(struct seq_file *sf, struct blkg_policy_data *pd,
1610 int off)
1611 {
1612 struct throtl_grp *tg = pd_to_tg(pd);
1613 const char *dname = blkg_dev_name(pd->blkg);
1614 char bufs[4][21] = { "max", "max", "max", "max" };
1615 u64 bps_dft;
1616 unsigned int iops_dft;
1617 char idle_time[26] = "";
1618 char latency_time[26] = "";
1619
1620 if (!dname)
1621 return 0;
1622
1623 if (off == LIMIT_LOW) {
1624 bps_dft = 0;
1625 iops_dft = 0;
1626 } else {
1627 bps_dft = U64_MAX;
1628 iops_dft = UINT_MAX;
1629 }
1630
1631 if (tg->bps_conf[READ][off] == bps_dft &&
1632 tg->bps_conf[WRITE][off] == bps_dft &&
1633 tg->iops_conf[READ][off] == iops_dft &&
1634 tg->iops_conf[WRITE][off] == iops_dft &&
1635 (off != LIMIT_LOW ||
1636 (tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD &&
1637 tg->latency_target_conf == DFL_LATENCY_TARGET)))
1638 return 0;
1639
1640 if (tg->bps_conf[READ][off] != U64_MAX)
1641 snprintf(bufs[0], sizeof(bufs[0]), "%llu",
1642 tg->bps_conf[READ][off]);
1643 if (tg->bps_conf[WRITE][off] != U64_MAX)
1644 snprintf(bufs[1], sizeof(bufs[1]), "%llu",
1645 tg->bps_conf[WRITE][off]);
1646 if (tg->iops_conf[READ][off] != UINT_MAX)
1647 snprintf(bufs[2], sizeof(bufs[2]), "%u",
1648 tg->iops_conf[READ][off]);
1649 if (tg->iops_conf[WRITE][off] != UINT_MAX)
1650 snprintf(bufs[3], sizeof(bufs[3]), "%u",
1651 tg->iops_conf[WRITE][off]);
1652 if (off == LIMIT_LOW) {
1653 if (tg->idletime_threshold_conf == ULONG_MAX)
1654 strcpy(idle_time, " idle=max");
1655 else
1656 snprintf(idle_time, sizeof(idle_time), " idle=%lu",
1657 tg->idletime_threshold_conf);
1658
1659 if (tg->latency_target_conf == ULONG_MAX)
1660 strcpy(latency_time, " latency=max");
1661 else
1662 snprintf(latency_time, sizeof(latency_time),
1663 " latency=%lu", tg->latency_target_conf);
1664 }
1665
1666 seq_printf(sf, "%s rbps=%s wbps=%s riops=%s wiops=%s%s%s\n",
1667 dname, bufs[0], bufs[1], bufs[2], bufs[3], idle_time,
1668 latency_time);
1669 return 0;
1670 }
1671
tg_print_limit(struct seq_file * sf,void * v)1672 static int tg_print_limit(struct seq_file *sf, void *v)
1673 {
1674 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_limit,
1675 &blkcg_policy_throtl, seq_cft(sf)->private, false);
1676 return 0;
1677 }
1678
tg_set_limit(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)1679 static ssize_t tg_set_limit(struct kernfs_open_file *of,
1680 char *buf, size_t nbytes, loff_t off)
1681 {
1682 struct blkcg *blkcg = css_to_blkcg(of_css(of));
1683 struct blkg_conf_ctx ctx;
1684 struct throtl_grp *tg;
1685 u64 v[4];
1686 unsigned long idle_time;
1687 unsigned long latency_time;
1688 int ret;
1689 int index = of_cft(of)->private;
1690
1691 ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1692 if (ret)
1693 return ret;
1694
1695 ret = throtl_check_init_done(ctx.disk->queue);
1696 if (ret)
1697 goto out_finish;
1698
1699 tg = blkg_to_tg(ctx.blkg);
1700 v[0] = tg->bps_conf[READ][index];
1701 v[1] = tg->bps_conf[WRITE][index];
1702 v[2] = tg->iops_conf[READ][index];
1703 v[3] = tg->iops_conf[WRITE][index];
1704
1705 idle_time = tg->idletime_threshold_conf;
1706 latency_time = tg->latency_target_conf;
1707 while (true) {
1708 char tok[27]; /* wiops=18446744073709551616 */
1709 char *p;
1710 u64 val = U64_MAX;
1711 int len;
1712
1713 if (sscanf(ctx.body, "%26s%n", tok, &len) != 1)
1714 break;
1715 if (tok[0] == '\0')
1716 break;
1717 ctx.body += len;
1718
1719 ret = -EINVAL;
1720 p = tok;
1721 strsep(&p, "=");
1722 if (!p || (sscanf(p, "%llu", &val) != 1 && strcmp(p, "max")))
1723 goto out_finish;
1724
1725 ret = -ERANGE;
1726 if (!val)
1727 goto out_finish;
1728
1729 ret = -EINVAL;
1730 if (!strcmp(tok, "rbps") && val > 1)
1731 v[0] = val;
1732 else if (!strcmp(tok, "wbps") && val > 1)
1733 v[1] = val;
1734 else if (!strcmp(tok, "riops") && val > 1)
1735 v[2] = min_t(u64, val, UINT_MAX);
1736 else if (!strcmp(tok, "wiops") && val > 1)
1737 v[3] = min_t(u64, val, UINT_MAX);
1738 else if (off == LIMIT_LOW && !strcmp(tok, "idle"))
1739 idle_time = val;
1740 else if (off == LIMIT_LOW && !strcmp(tok, "latency"))
1741 latency_time = val;
1742 else
1743 goto out_finish;
1744 }
1745
1746 tg->bps_conf[READ][index] = v[0];
1747 tg->bps_conf[WRITE][index] = v[1];
1748 tg->iops_conf[READ][index] = v[2];
1749 tg->iops_conf[WRITE][index] = v[3];
1750
1751 if (index == LIMIT_MAX) {
1752 tg->bps[READ][index] = v[0];
1753 tg->bps[WRITE][index] = v[1];
1754 tg->iops[READ][index] = v[2];
1755 tg->iops[WRITE][index] = v[3];
1756 }
1757 tg->bps[READ][LIMIT_LOW] = min(tg->bps_conf[READ][LIMIT_LOW],
1758 tg->bps_conf[READ][LIMIT_MAX]);
1759 tg->bps[WRITE][LIMIT_LOW] = min(tg->bps_conf[WRITE][LIMIT_LOW],
1760 tg->bps_conf[WRITE][LIMIT_MAX]);
1761 tg->iops[READ][LIMIT_LOW] = min(tg->iops_conf[READ][LIMIT_LOW],
1762 tg->iops_conf[READ][LIMIT_MAX]);
1763 tg->iops[WRITE][LIMIT_LOW] = min(tg->iops_conf[WRITE][LIMIT_LOW],
1764 tg->iops_conf[WRITE][LIMIT_MAX]);
1765 tg->idletime_threshold_conf = idle_time;
1766 tg->latency_target_conf = latency_time;
1767
1768 /* force user to configure all settings for low limit */
1769 if (!(tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW] ||
1770 tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) ||
1771 tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD ||
1772 tg->latency_target_conf == DFL_LATENCY_TARGET) {
1773 tg->bps[READ][LIMIT_LOW] = 0;
1774 tg->bps[WRITE][LIMIT_LOW] = 0;
1775 tg->iops[READ][LIMIT_LOW] = 0;
1776 tg->iops[WRITE][LIMIT_LOW] = 0;
1777 tg->idletime_threshold = DFL_IDLE_THRESHOLD;
1778 tg->latency_target = DFL_LATENCY_TARGET;
1779 } else if (index == LIMIT_LOW) {
1780 tg->idletime_threshold = tg->idletime_threshold_conf;
1781 tg->latency_target = tg->latency_target_conf;
1782 }
1783
1784 blk_throtl_update_limit_valid(tg->td);
1785 if (tg->td->limit_valid[LIMIT_LOW]) {
1786 if (index == LIMIT_LOW)
1787 tg->td->limit_index = LIMIT_LOW;
1788 } else
1789 tg->td->limit_index = LIMIT_MAX;
1790 tg_conf_updated(tg, index == LIMIT_LOW &&
1791 tg->td->limit_valid[LIMIT_LOW]);
1792 ret = 0;
1793 out_finish:
1794 blkg_conf_finish(&ctx);
1795 ret = throtl_restart_syscall_when_busy(ret);
1796 return ret ?: nbytes;
1797 }
1798
1799 static struct cftype throtl_files[] = {
1800 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
1801 {
1802 .name = "low",
1803 .flags = CFTYPE_NOT_ON_ROOT,
1804 .seq_show = tg_print_limit,
1805 .write = tg_set_limit,
1806 .private = LIMIT_LOW,
1807 },
1808 #endif
1809 {
1810 .name = "max",
1811 .flags = CFTYPE_NOT_ON_ROOT,
1812 .seq_show = tg_print_limit,
1813 .write = tg_set_limit,
1814 .private = LIMIT_MAX,
1815 },
1816 { } /* terminate */
1817 };
1818
throtl_shutdown_wq(struct request_queue * q)1819 static void throtl_shutdown_wq(struct request_queue *q)
1820 {
1821 struct throtl_data *td = q->td;
1822
1823 cancel_work_sync(&td->dispatch_work);
1824 }
1825
1826 static struct blkcg_policy blkcg_policy_throtl = {
1827 .dfl_cftypes = throtl_files,
1828 .legacy_cftypes = throtl_legacy_files,
1829
1830 .pd_alloc_fn = throtl_pd_alloc,
1831 .pd_init_fn = throtl_pd_init,
1832 .pd_online_fn = throtl_pd_online,
1833 .pd_offline_fn = throtl_pd_offline,
1834 .pd_free_fn = throtl_pd_free,
1835 };
1836
__tg_last_low_overflow_time(struct throtl_grp * tg)1837 static unsigned long __tg_last_low_overflow_time(struct throtl_grp *tg)
1838 {
1839 unsigned long rtime = jiffies, wtime = jiffies;
1840
1841 if (tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW])
1842 rtime = tg->last_low_overflow_time[READ];
1843 if (tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW])
1844 wtime = tg->last_low_overflow_time[WRITE];
1845 return min(rtime, wtime);
1846 }
1847
1848 /* tg should not be an intermediate node */
tg_last_low_overflow_time(struct throtl_grp * tg)1849 static unsigned long tg_last_low_overflow_time(struct throtl_grp *tg)
1850 {
1851 struct throtl_service_queue *parent_sq;
1852 struct throtl_grp *parent = tg;
1853 unsigned long ret = __tg_last_low_overflow_time(tg);
1854
1855 while (true) {
1856 parent_sq = parent->service_queue.parent_sq;
1857 parent = sq_to_tg(parent_sq);
1858 if (!parent)
1859 break;
1860
1861 /*
1862 * The parent doesn't have low limit, it always reaches low
1863 * limit. Its overflow time is useless for children
1864 */
1865 if (!parent->bps[READ][LIMIT_LOW] &&
1866 !parent->iops[READ][LIMIT_LOW] &&
1867 !parent->bps[WRITE][LIMIT_LOW] &&
1868 !parent->iops[WRITE][LIMIT_LOW])
1869 continue;
1870 if (time_after(__tg_last_low_overflow_time(parent), ret))
1871 ret = __tg_last_low_overflow_time(parent);
1872 }
1873 return ret;
1874 }
1875
throtl_tg_is_idle(struct throtl_grp * tg)1876 static bool throtl_tg_is_idle(struct throtl_grp *tg)
1877 {
1878 /*
1879 * cgroup is idle if:
1880 * - single idle is too long, longer than a fixed value (in case user
1881 * configure a too big threshold) or 4 times of idletime threshold
1882 * - average think time is more than threshold
1883 * - IO latency is largely below threshold
1884 */
1885 unsigned long time;
1886 bool ret;
1887
1888 time = min_t(unsigned long, MAX_IDLE_TIME, 4 * tg->idletime_threshold);
1889 ret = tg->latency_target == DFL_LATENCY_TARGET ||
1890 tg->idletime_threshold == DFL_IDLE_THRESHOLD ||
1891 (ktime_get_ns() >> 10) - tg->last_finish_time > time ||
1892 tg->avg_idletime > tg->idletime_threshold ||
1893 (tg->latency_target && tg->bio_cnt &&
1894 tg->bad_bio_cnt * 5 < tg->bio_cnt);
1895 throtl_log(&tg->service_queue,
1896 "avg_idle=%ld, idle_threshold=%ld, bad_bio=%d, total_bio=%d, is_idle=%d, scale=%d",
1897 tg->avg_idletime, tg->idletime_threshold, tg->bad_bio_cnt,
1898 tg->bio_cnt, ret, tg->td->scale);
1899 return ret;
1900 }
1901
throtl_tg_can_upgrade(struct throtl_grp * tg)1902 static bool throtl_tg_can_upgrade(struct throtl_grp *tg)
1903 {
1904 struct throtl_service_queue *sq = &tg->service_queue;
1905 bool read_limit, write_limit;
1906
1907 /*
1908 * if cgroup reaches low limit (if low limit is 0, the cgroup always
1909 * reaches), it's ok to upgrade to next limit
1910 */
1911 read_limit = tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW];
1912 write_limit = tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW];
1913 if (!read_limit && !write_limit)
1914 return true;
1915 if (read_limit && sq->nr_queued[READ] &&
1916 (!write_limit || sq->nr_queued[WRITE]))
1917 return true;
1918 if (write_limit && sq->nr_queued[WRITE] &&
1919 (!read_limit || sq->nr_queued[READ]))
1920 return true;
1921
1922 if (time_after_eq(jiffies,
1923 tg_last_low_overflow_time(tg) + tg->td->throtl_slice) &&
1924 throtl_tg_is_idle(tg))
1925 return true;
1926 return false;
1927 }
1928
throtl_hierarchy_can_upgrade(struct throtl_grp * tg)1929 static bool throtl_hierarchy_can_upgrade(struct throtl_grp *tg)
1930 {
1931 while (true) {
1932 if (throtl_tg_can_upgrade(tg))
1933 return true;
1934 tg = sq_to_tg(tg->service_queue.parent_sq);
1935 if (!tg || !tg_to_blkg(tg)->parent)
1936 return false;
1937 }
1938 return false;
1939 }
1940
throtl_can_upgrade(struct throtl_data * td,struct throtl_grp * this_tg)1941 static bool throtl_can_upgrade(struct throtl_data *td,
1942 struct throtl_grp *this_tg)
1943 {
1944 struct cgroup_subsys_state *pos_css;
1945 struct blkcg_gq *blkg;
1946
1947 if (td->limit_index != LIMIT_LOW)
1948 return false;
1949
1950 if (time_before(jiffies, td->low_downgrade_time + td->throtl_slice))
1951 return false;
1952
1953 rcu_read_lock();
1954 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
1955 struct throtl_grp *tg = blkg_to_tg(blkg);
1956
1957 if (tg == this_tg)
1958 continue;
1959 if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
1960 continue;
1961 if (!throtl_hierarchy_can_upgrade(tg)) {
1962 rcu_read_unlock();
1963 return false;
1964 }
1965 }
1966 rcu_read_unlock();
1967 return true;
1968 }
1969
throtl_upgrade_check(struct throtl_grp * tg)1970 static void throtl_upgrade_check(struct throtl_grp *tg)
1971 {
1972 unsigned long now = jiffies;
1973
1974 if (tg->td->limit_index != LIMIT_LOW)
1975 return;
1976
1977 if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
1978 return;
1979
1980 tg->last_check_time = now;
1981
1982 if (!time_after_eq(now,
1983 __tg_last_low_overflow_time(tg) + tg->td->throtl_slice))
1984 return;
1985
1986 if (throtl_can_upgrade(tg->td, NULL))
1987 throtl_upgrade_state(tg->td);
1988 }
1989
throtl_upgrade_state(struct throtl_data * td)1990 static void throtl_upgrade_state(struct throtl_data *td)
1991 {
1992 struct cgroup_subsys_state *pos_css;
1993 struct blkcg_gq *blkg;
1994
1995 throtl_log(&td->service_queue, "upgrade to max");
1996 td->limit_index = LIMIT_MAX;
1997 td->low_upgrade_time = jiffies;
1998 td->scale = 0;
1999 rcu_read_lock();
2000 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
2001 struct throtl_grp *tg = blkg_to_tg(blkg);
2002 struct throtl_service_queue *sq = &tg->service_queue;
2003
2004 tg->disptime = jiffies - 1;
2005 throtl_select_dispatch(sq);
2006 throtl_schedule_next_dispatch(sq, true);
2007 }
2008 rcu_read_unlock();
2009 throtl_select_dispatch(&td->service_queue);
2010 throtl_schedule_next_dispatch(&td->service_queue, true);
2011 queue_work(kthrotld_workqueue, &td->dispatch_work);
2012 }
2013
throtl_downgrade_state(struct throtl_data * td)2014 static void throtl_downgrade_state(struct throtl_data *td)
2015 {
2016 td->scale /= 2;
2017
2018 throtl_log(&td->service_queue, "downgrade, scale %d", td->scale);
2019 if (td->scale) {
2020 td->low_upgrade_time = jiffies - td->scale * td->throtl_slice;
2021 return;
2022 }
2023
2024 td->limit_index = LIMIT_LOW;
2025 td->low_downgrade_time = jiffies;
2026 }
2027
throtl_tg_can_downgrade(struct throtl_grp * tg)2028 static bool throtl_tg_can_downgrade(struct throtl_grp *tg)
2029 {
2030 struct throtl_data *td = tg->td;
2031 unsigned long now = jiffies;
2032
2033 /*
2034 * If cgroup is below low limit, consider downgrade and throttle other
2035 * cgroups
2036 */
2037 if (time_after_eq(now, td->low_upgrade_time + td->throtl_slice) &&
2038 time_after_eq(now, tg_last_low_overflow_time(tg) +
2039 td->throtl_slice) &&
2040 (!throtl_tg_is_idle(tg) ||
2041 !list_empty(&tg_to_blkg(tg)->blkcg->css.children)))
2042 return true;
2043 return false;
2044 }
2045
throtl_hierarchy_can_downgrade(struct throtl_grp * tg)2046 static bool throtl_hierarchy_can_downgrade(struct throtl_grp *tg)
2047 {
2048 while (true) {
2049 if (!throtl_tg_can_downgrade(tg))
2050 return false;
2051 tg = sq_to_tg(tg->service_queue.parent_sq);
2052 if (!tg || !tg_to_blkg(tg)->parent)
2053 break;
2054 }
2055 return true;
2056 }
2057
throtl_downgrade_check(struct throtl_grp * tg)2058 static void throtl_downgrade_check(struct throtl_grp *tg)
2059 {
2060 uint64_t bps;
2061 unsigned int iops;
2062 unsigned long elapsed_time;
2063 unsigned long now = jiffies;
2064
2065 if (tg->td->limit_index != LIMIT_MAX ||
2066 !tg->td->limit_valid[LIMIT_LOW])
2067 return;
2068 if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
2069 return;
2070 if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
2071 return;
2072
2073 elapsed_time = now - tg->last_check_time;
2074 tg->last_check_time = now;
2075
2076 if (time_before(now, tg_last_low_overflow_time(tg) +
2077 tg->td->throtl_slice))
2078 return;
2079
2080 if (tg->bps[READ][LIMIT_LOW]) {
2081 bps = tg->last_bytes_disp[READ] * HZ;
2082 do_div(bps, elapsed_time);
2083 if (bps >= tg->bps[READ][LIMIT_LOW])
2084 tg->last_low_overflow_time[READ] = now;
2085 }
2086
2087 if (tg->bps[WRITE][LIMIT_LOW]) {
2088 bps = tg->last_bytes_disp[WRITE] * HZ;
2089 do_div(bps, elapsed_time);
2090 if (bps >= tg->bps[WRITE][LIMIT_LOW])
2091 tg->last_low_overflow_time[WRITE] = now;
2092 }
2093
2094 if (tg->iops[READ][LIMIT_LOW]) {
2095 tg->last_io_disp[READ] += atomic_xchg(&tg->last_io_split_cnt[READ], 0);
2096 iops = tg->last_io_disp[READ] * HZ / elapsed_time;
2097 if (iops >= tg->iops[READ][LIMIT_LOW])
2098 tg->last_low_overflow_time[READ] = now;
2099 }
2100
2101 if (tg->iops[WRITE][LIMIT_LOW]) {
2102 tg->last_io_disp[WRITE] += atomic_xchg(&tg->last_io_split_cnt[WRITE], 0);
2103 iops = tg->last_io_disp[WRITE] * HZ / elapsed_time;
2104 if (iops >= tg->iops[WRITE][LIMIT_LOW])
2105 tg->last_low_overflow_time[WRITE] = now;
2106 }
2107
2108 /*
2109 * If cgroup is below low limit, consider downgrade and throttle other
2110 * cgroups
2111 */
2112 if (throtl_hierarchy_can_downgrade(tg))
2113 throtl_downgrade_state(tg->td);
2114
2115 tg->last_bytes_disp[READ] = 0;
2116 tg->last_bytes_disp[WRITE] = 0;
2117 tg->last_io_disp[READ] = 0;
2118 tg->last_io_disp[WRITE] = 0;
2119 }
2120
blk_throtl_update_idletime(struct throtl_grp * tg)2121 static void blk_throtl_update_idletime(struct throtl_grp *tg)
2122 {
2123 unsigned long now;
2124 unsigned long last_finish_time = tg->last_finish_time;
2125
2126 if (last_finish_time == 0)
2127 return;
2128
2129 now = ktime_get_ns() >> 10;
2130 if (now <= last_finish_time ||
2131 last_finish_time == tg->checked_last_finish_time)
2132 return;
2133
2134 tg->avg_idletime = (tg->avg_idletime * 7 + now - last_finish_time) >> 3;
2135 tg->checked_last_finish_time = last_finish_time;
2136 }
2137
2138 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
throtl_update_latency_buckets(struct throtl_data * td)2139 static void throtl_update_latency_buckets(struct throtl_data *td)
2140 {
2141 struct avg_latency_bucket avg_latency[2][LATENCY_BUCKET_SIZE];
2142 int i, cpu, rw;
2143 unsigned long last_latency[2] = { 0 };
2144 unsigned long latency[2];
2145
2146 if (!blk_queue_nonrot(td->queue) || !td->limit_valid[LIMIT_LOW])
2147 return;
2148 if (time_before(jiffies, td->last_calculate_time + HZ))
2149 return;
2150 td->last_calculate_time = jiffies;
2151
2152 memset(avg_latency, 0, sizeof(avg_latency));
2153 for (rw = READ; rw <= WRITE; rw++) {
2154 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2155 struct latency_bucket *tmp = &td->tmp_buckets[rw][i];
2156
2157 for_each_possible_cpu(cpu) {
2158 struct latency_bucket *bucket;
2159
2160 /* this isn't race free, but ok in practice */
2161 bucket = per_cpu_ptr(td->latency_buckets[rw],
2162 cpu);
2163 tmp->total_latency += bucket[i].total_latency;
2164 tmp->samples += bucket[i].samples;
2165 bucket[i].total_latency = 0;
2166 bucket[i].samples = 0;
2167 }
2168
2169 if (tmp->samples >= 32) {
2170 int samples = tmp->samples;
2171
2172 latency[rw] = tmp->total_latency;
2173
2174 tmp->total_latency = 0;
2175 tmp->samples = 0;
2176 latency[rw] /= samples;
2177 if (latency[rw] == 0)
2178 continue;
2179 avg_latency[rw][i].latency = latency[rw];
2180 }
2181 }
2182 }
2183
2184 for (rw = READ; rw <= WRITE; rw++) {
2185 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2186 if (!avg_latency[rw][i].latency) {
2187 if (td->avg_buckets[rw][i].latency < last_latency[rw])
2188 td->avg_buckets[rw][i].latency =
2189 last_latency[rw];
2190 continue;
2191 }
2192
2193 if (!td->avg_buckets[rw][i].valid)
2194 latency[rw] = avg_latency[rw][i].latency;
2195 else
2196 latency[rw] = (td->avg_buckets[rw][i].latency * 7 +
2197 avg_latency[rw][i].latency) >> 3;
2198
2199 td->avg_buckets[rw][i].latency = max(latency[rw],
2200 last_latency[rw]);
2201 td->avg_buckets[rw][i].valid = true;
2202 last_latency[rw] = td->avg_buckets[rw][i].latency;
2203 }
2204 }
2205
2206 for (i = 0; i < LATENCY_BUCKET_SIZE; i++)
2207 throtl_log(&td->service_queue,
2208 "Latency bucket %d: read latency=%ld, read valid=%d, "
2209 "write latency=%ld, write valid=%d", i,
2210 td->avg_buckets[READ][i].latency,
2211 td->avg_buckets[READ][i].valid,
2212 td->avg_buckets[WRITE][i].latency,
2213 td->avg_buckets[WRITE][i].valid);
2214 }
2215 #else
throtl_update_latency_buckets(struct throtl_data * td)2216 static inline void throtl_update_latency_buckets(struct throtl_data *td)
2217 {
2218 }
2219 #endif
2220
blk_throtl_charge_bio_split(struct bio * bio)2221 void blk_throtl_charge_bio_split(struct bio *bio)
2222 {
2223 struct blkcg_gq *blkg = bio->bi_blkg;
2224 struct throtl_grp *parent = blkg_to_tg(blkg);
2225 struct throtl_service_queue *parent_sq;
2226 bool rw = bio_data_dir(bio);
2227
2228 do {
2229 if (!parent->has_rules[rw])
2230 break;
2231
2232 atomic_inc(&parent->io_split_cnt[rw]);
2233 atomic_inc(&parent->last_io_split_cnt[rw]);
2234
2235 parent_sq = parent->service_queue.parent_sq;
2236 parent = sq_to_tg(parent_sq);
2237 } while (parent);
2238 }
2239
blk_throtl_bio(struct bio * bio)2240 bool blk_throtl_bio(struct bio *bio)
2241 {
2242 struct request_queue *q = bio->bi_disk->queue;
2243 struct blkcg_gq *blkg = bio->bi_blkg;
2244 struct throtl_qnode *qn = NULL;
2245 struct throtl_grp *tg = blkg_to_tg(blkg);
2246 struct throtl_service_queue *sq;
2247 bool rw = bio_data_dir(bio);
2248 bool throttled = false;
2249 struct throtl_data *td = tg->td;
2250
2251 rcu_read_lock();
2252
2253 /* see throtl_charge_bio() */
2254 if (bio_flagged(bio, BIO_THROTTLED))
2255 goto out;
2256
2257 if (!cgroup_subsys_on_dfl(io_cgrp_subsys)) {
2258 blkg_rwstat_add(&tg->stat_bytes, bio->bi_opf,
2259 bio->bi_iter.bi_size);
2260 blkg_rwstat_add(&tg->stat_ios, bio->bi_opf, 1);
2261 }
2262
2263 if (!tg->has_rules[rw])
2264 goto out;
2265
2266 spin_lock_irq(&q->queue_lock);
2267
2268 throtl_update_latency_buckets(td);
2269
2270 blk_throtl_update_idletime(tg);
2271
2272 sq = &tg->service_queue;
2273
2274 again:
2275 while (true) {
2276 if (tg->last_low_overflow_time[rw] == 0)
2277 tg->last_low_overflow_time[rw] = jiffies;
2278 throtl_downgrade_check(tg);
2279 throtl_upgrade_check(tg);
2280 /* throtl is FIFO - if bios are already queued, should queue */
2281 if (sq->nr_queued[rw])
2282 break;
2283
2284 /* if above limits, break to queue */
2285 if (!tg_may_dispatch(tg, bio, NULL)) {
2286 tg->last_low_overflow_time[rw] = jiffies;
2287 if (throtl_can_upgrade(td, tg)) {
2288 throtl_upgrade_state(td);
2289 goto again;
2290 }
2291 break;
2292 }
2293
2294 /* within limits, let's charge and dispatch directly */
2295 throtl_charge_bio(tg, bio);
2296
2297 /*
2298 * We need to trim slice even when bios are not being queued
2299 * otherwise it might happen that a bio is not queued for
2300 * a long time and slice keeps on extending and trim is not
2301 * called for a long time. Now if limits are reduced suddenly
2302 * we take into account all the IO dispatched so far at new
2303 * low rate and * newly queued IO gets a really long dispatch
2304 * time.
2305 *
2306 * So keep on trimming slice even if bio is not queued.
2307 */
2308 throtl_trim_slice(tg, rw);
2309
2310 /*
2311 * @bio passed through this layer without being throttled.
2312 * Climb up the ladder. If we're already at the top, it
2313 * can be executed directly.
2314 */
2315 qn = &tg->qnode_on_parent[rw];
2316 sq = sq->parent_sq;
2317 tg = sq_to_tg(sq);
2318 if (!tg)
2319 goto out_unlock;
2320 }
2321
2322 /* out-of-limit, queue to @tg */
2323 throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d",
2324 rw == READ ? 'R' : 'W',
2325 tg->bytes_disp[rw], bio->bi_iter.bi_size,
2326 tg_bps_limit(tg, rw),
2327 tg->io_disp[rw], tg_iops_limit(tg, rw),
2328 sq->nr_queued[READ], sq->nr_queued[WRITE]);
2329
2330 tg->last_low_overflow_time[rw] = jiffies;
2331
2332 td->nr_queued[rw]++;
2333 throtl_add_bio_tg(bio, qn, tg);
2334 throttled = true;
2335
2336 /*
2337 * Update @tg's dispatch time and force schedule dispatch if @tg
2338 * was empty before @bio. The forced scheduling isn't likely to
2339 * cause undue delay as @bio is likely to be dispatched directly if
2340 * its @tg's disptime is not in the future.
2341 */
2342 if (tg->flags & THROTL_TG_WAS_EMPTY) {
2343 tg_update_disptime(tg);
2344 throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true);
2345 }
2346
2347 out_unlock:
2348 spin_unlock_irq(&q->queue_lock);
2349 out:
2350 bio_set_flag(bio, BIO_THROTTLED);
2351
2352 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2353 if (throttled || !td->track_bio_latency)
2354 bio->bi_issue.value |= BIO_ISSUE_THROTL_SKIP_LATENCY;
2355 #endif
2356 rcu_read_unlock();
2357 return throttled;
2358 }
2359
2360 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
throtl_track_latency(struct throtl_data * td,sector_t size,int op,unsigned long time)2361 static void throtl_track_latency(struct throtl_data *td, sector_t size,
2362 int op, unsigned long time)
2363 {
2364 struct latency_bucket *latency;
2365 int index;
2366
2367 if (!td || td->limit_index != LIMIT_LOW ||
2368 !(op == REQ_OP_READ || op == REQ_OP_WRITE) ||
2369 !blk_queue_nonrot(td->queue))
2370 return;
2371
2372 index = request_bucket_index(size);
2373
2374 latency = get_cpu_ptr(td->latency_buckets[op]);
2375 latency[index].total_latency += time;
2376 latency[index].samples++;
2377 put_cpu_ptr(td->latency_buckets[op]);
2378 }
2379
blk_throtl_stat_add(struct request * rq,u64 time_ns)2380 void blk_throtl_stat_add(struct request *rq, u64 time_ns)
2381 {
2382 struct request_queue *q = rq->q;
2383 struct throtl_data *td = q->td;
2384
2385 throtl_track_latency(td, blk_rq_stats_sectors(rq), req_op(rq),
2386 time_ns >> 10);
2387 }
2388
blk_throtl_bio_endio(struct bio * bio)2389 void blk_throtl_bio_endio(struct bio *bio)
2390 {
2391 struct blkcg_gq *blkg;
2392 struct throtl_grp *tg;
2393 u64 finish_time_ns;
2394 unsigned long finish_time;
2395 unsigned long start_time;
2396 unsigned long lat;
2397 int rw = bio_data_dir(bio);
2398
2399 blkg = bio->bi_blkg;
2400 if (!blkg)
2401 return;
2402 tg = blkg_to_tg(blkg);
2403 if (!tg->td->limit_valid[LIMIT_LOW])
2404 return;
2405
2406 finish_time_ns = ktime_get_ns();
2407 tg->last_finish_time = finish_time_ns >> 10;
2408
2409 start_time = bio_issue_time(&bio->bi_issue) >> 10;
2410 finish_time = __bio_issue_time(finish_time_ns) >> 10;
2411 if (!start_time || finish_time <= start_time)
2412 return;
2413
2414 lat = finish_time - start_time;
2415 /* this is only for bio based driver */
2416 if (!(bio->bi_issue.value & BIO_ISSUE_THROTL_SKIP_LATENCY))
2417 throtl_track_latency(tg->td, bio_issue_size(&bio->bi_issue),
2418 bio_op(bio), lat);
2419
2420 if (tg->latency_target && lat >= tg->td->filtered_latency) {
2421 int bucket;
2422 unsigned int threshold;
2423
2424 bucket = request_bucket_index(bio_issue_size(&bio->bi_issue));
2425 threshold = tg->td->avg_buckets[rw][bucket].latency +
2426 tg->latency_target;
2427 if (lat > threshold)
2428 tg->bad_bio_cnt++;
2429 /*
2430 * Not race free, could get wrong count, which means cgroups
2431 * will be throttled
2432 */
2433 tg->bio_cnt++;
2434 }
2435
2436 if (time_after(jiffies, tg->bio_cnt_reset_time) || tg->bio_cnt > 1024) {
2437 tg->bio_cnt_reset_time = tg->td->throtl_slice + jiffies;
2438 tg->bio_cnt /= 2;
2439 tg->bad_bio_cnt /= 2;
2440 }
2441 }
2442 #endif
2443
blk_throtl_init(struct request_queue * q)2444 int blk_throtl_init(struct request_queue *q)
2445 {
2446 struct throtl_data *td;
2447 int ret;
2448
2449 td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
2450 if (!td)
2451 return -ENOMEM;
2452 td->latency_buckets[READ] = __alloc_percpu(sizeof(struct latency_bucket) *
2453 LATENCY_BUCKET_SIZE, __alignof__(u64));
2454 if (!td->latency_buckets[READ]) {
2455 kfree(td);
2456 return -ENOMEM;
2457 }
2458 td->latency_buckets[WRITE] = __alloc_percpu(sizeof(struct latency_bucket) *
2459 LATENCY_BUCKET_SIZE, __alignof__(u64));
2460 if (!td->latency_buckets[WRITE]) {
2461 free_percpu(td->latency_buckets[READ]);
2462 kfree(td);
2463 return -ENOMEM;
2464 }
2465
2466 INIT_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn);
2467 throtl_service_queue_init(&td->service_queue);
2468
2469 q->td = td;
2470 td->queue = q;
2471
2472 td->limit_valid[LIMIT_MAX] = true;
2473 td->limit_index = LIMIT_MAX;
2474 td->low_upgrade_time = jiffies;
2475 td->low_downgrade_time = jiffies;
2476
2477 /* activate policy */
2478 ret = blkcg_activate_policy(q, &blkcg_policy_throtl);
2479 if (ret) {
2480 free_percpu(td->latency_buckets[READ]);
2481 free_percpu(td->latency_buckets[WRITE]);
2482 kfree(td);
2483 }
2484 return ret;
2485 }
2486
blk_throtl_exit(struct request_queue * q)2487 void blk_throtl_exit(struct request_queue *q)
2488 {
2489 BUG_ON(!q->td);
2490 del_timer_sync(&q->td->service_queue.pending_timer);
2491 throtl_shutdown_wq(q);
2492 blkcg_deactivate_policy(q, &blkcg_policy_throtl);
2493 free_percpu(q->td->latency_buckets[READ]);
2494 free_percpu(q->td->latency_buckets[WRITE]);
2495 kfree(q->td);
2496 }
2497
blk_throtl_register_queue(struct request_queue * q)2498 void blk_throtl_register_queue(struct request_queue *q)
2499 {
2500 struct throtl_data *td;
2501 int i;
2502
2503 td = q->td;
2504 BUG_ON(!td);
2505
2506 if (blk_queue_nonrot(q)) {
2507 td->throtl_slice = DFL_THROTL_SLICE_SSD;
2508 td->filtered_latency = LATENCY_FILTERED_SSD;
2509 } else {
2510 td->throtl_slice = DFL_THROTL_SLICE_HD;
2511 td->filtered_latency = LATENCY_FILTERED_HD;
2512 for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
2513 td->avg_buckets[READ][i].latency = DFL_HD_BASELINE_LATENCY;
2514 td->avg_buckets[WRITE][i].latency = DFL_HD_BASELINE_LATENCY;
2515 }
2516 }
2517 #ifndef CONFIG_BLK_DEV_THROTTLING_LOW
2518 /* if no low limit, use previous default */
2519 td->throtl_slice = DFL_THROTL_SLICE_HD;
2520 #endif
2521
2522 td->track_bio_latency = !queue_is_mq(q);
2523 if (!td->track_bio_latency)
2524 blk_stat_enable_accounting(q);
2525 }
2526
2527 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
blk_throtl_sample_time_show(struct request_queue * q,char * page)2528 ssize_t blk_throtl_sample_time_show(struct request_queue *q, char *page)
2529 {
2530 if (!q->td)
2531 return -EINVAL;
2532 return sprintf(page, "%u\n", jiffies_to_msecs(q->td->throtl_slice));
2533 }
2534
blk_throtl_sample_time_store(struct request_queue * q,const char * page,size_t count)2535 ssize_t blk_throtl_sample_time_store(struct request_queue *q,
2536 const char *page, size_t count)
2537 {
2538 unsigned long v;
2539 unsigned long t;
2540
2541 if (!q->td)
2542 return -EINVAL;
2543 if (kstrtoul(page, 10, &v))
2544 return -EINVAL;
2545 t = msecs_to_jiffies(v);
2546 if (t == 0 || t > MAX_THROTL_SLICE)
2547 return -EINVAL;
2548 q->td->throtl_slice = t;
2549 return count;
2550 }
2551 #endif
2552
throtl_init(void)2553 static int __init throtl_init(void)
2554 {
2555 kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
2556 if (!kthrotld_workqueue)
2557 panic("Failed to create kthrotld\n");
2558
2559 return blkcg_policy_register(&blkcg_policy_throtl);
2560 }
2561
2562 module_init(throtl_init);
2563