1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * acpi_pad.c ACPI Processor Aggregator Driver
4 *
5 * Copyright (c) 2009, Intel Corporation.
6 */
7
8 #include <linux/kernel.h>
9 #include <linux/cpumask.h>
10 #include <linux/module.h>
11 #include <linux/init.h>
12 #include <linux/types.h>
13 #include <linux/kthread.h>
14 #include <uapi/linux/sched/types.h>
15 #include <linux/freezer.h>
16 #include <linux/cpu.h>
17 #include <linux/tick.h>
18 #include <linux/slab.h>
19 #include <linux/acpi.h>
20 #include <asm/mwait.h>
21 #include <xen/xen.h>
22
23 #define ACPI_PROCESSOR_AGGREGATOR_CLASS "acpi_pad"
24 #define ACPI_PROCESSOR_AGGREGATOR_DEVICE_NAME "Processor Aggregator"
25 #define ACPI_PROCESSOR_AGGREGATOR_NOTIFY 0x80
26 static DEFINE_MUTEX(isolated_cpus_lock);
27 static DEFINE_MUTEX(round_robin_lock);
28
29 static unsigned long power_saving_mwait_eax;
30
31 static unsigned char tsc_detected_unstable;
32 static unsigned char tsc_marked_unstable;
33
power_saving_mwait_init(void)34 static void power_saving_mwait_init(void)
35 {
36 unsigned int eax, ebx, ecx, edx;
37 unsigned int highest_cstate = 0;
38 unsigned int highest_subcstate = 0;
39 int i;
40
41 if (!boot_cpu_has(X86_FEATURE_MWAIT))
42 return;
43 if (boot_cpu_data.cpuid_level < CPUID_MWAIT_LEAF)
44 return;
45
46 cpuid(CPUID_MWAIT_LEAF, &eax, &ebx, &ecx, &edx);
47
48 if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED) ||
49 !(ecx & CPUID5_ECX_INTERRUPT_BREAK))
50 return;
51
52 edx >>= MWAIT_SUBSTATE_SIZE;
53 for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
54 if (edx & MWAIT_SUBSTATE_MASK) {
55 highest_cstate = i;
56 highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
57 }
58 }
59 power_saving_mwait_eax = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
60 (highest_subcstate - 1);
61
62 #if defined(CONFIG_X86)
63 switch (boot_cpu_data.x86_vendor) {
64 case X86_VENDOR_HYGON:
65 case X86_VENDOR_AMD:
66 case X86_VENDOR_INTEL:
67 case X86_VENDOR_ZHAOXIN:
68 /*
69 * AMD Fam10h TSC will tick in all
70 * C/P/S0/S1 states when this bit is set.
71 */
72 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
73 tsc_detected_unstable = 1;
74 break;
75 default:
76 /* TSC could halt in idle */
77 tsc_detected_unstable = 1;
78 }
79 #endif
80 }
81
82 static unsigned long cpu_weight[NR_CPUS];
83 static int tsk_in_cpu[NR_CPUS] = {[0 ... NR_CPUS-1] = -1};
84 static DECLARE_BITMAP(pad_busy_cpus_bits, NR_CPUS);
round_robin_cpu(unsigned int tsk_index)85 static void round_robin_cpu(unsigned int tsk_index)
86 {
87 struct cpumask *pad_busy_cpus = to_cpumask(pad_busy_cpus_bits);
88 cpumask_var_t tmp;
89 int cpu;
90 unsigned long min_weight = -1;
91 unsigned long preferred_cpu;
92
93 if (!alloc_cpumask_var(&tmp, GFP_KERNEL))
94 return;
95
96 mutex_lock(&round_robin_lock);
97 cpumask_clear(tmp);
98 for_each_cpu(cpu, pad_busy_cpus)
99 cpumask_or(tmp, tmp, topology_sibling_cpumask(cpu));
100 cpumask_andnot(tmp, cpu_online_mask, tmp);
101 /* avoid HT sibilings if possible */
102 if (cpumask_empty(tmp))
103 cpumask_andnot(tmp, cpu_online_mask, pad_busy_cpus);
104 if (cpumask_empty(tmp)) {
105 mutex_unlock(&round_robin_lock);
106 free_cpumask_var(tmp);
107 return;
108 }
109 for_each_cpu(cpu, tmp) {
110 if (cpu_weight[cpu] < min_weight) {
111 min_weight = cpu_weight[cpu];
112 preferred_cpu = cpu;
113 }
114 }
115
116 if (tsk_in_cpu[tsk_index] != -1)
117 cpumask_clear_cpu(tsk_in_cpu[tsk_index], pad_busy_cpus);
118 tsk_in_cpu[tsk_index] = preferred_cpu;
119 cpumask_set_cpu(preferred_cpu, pad_busy_cpus);
120 cpu_weight[preferred_cpu]++;
121 mutex_unlock(&round_robin_lock);
122
123 set_cpus_allowed_ptr(current, cpumask_of(preferred_cpu));
124
125 free_cpumask_var(tmp);
126 }
127
exit_round_robin(unsigned int tsk_index)128 static void exit_round_robin(unsigned int tsk_index)
129 {
130 struct cpumask *pad_busy_cpus = to_cpumask(pad_busy_cpus_bits);
131 cpumask_clear_cpu(tsk_in_cpu[tsk_index], pad_busy_cpus);
132 tsk_in_cpu[tsk_index] = -1;
133 }
134
135 static unsigned int idle_pct = 5; /* percentage */
136 static unsigned int round_robin_time = 1; /* second */
power_saving_thread(void * data)137 static int power_saving_thread(void *data)
138 {
139 int do_sleep;
140 unsigned int tsk_index = (unsigned long)data;
141 u64 last_jiffies = 0;
142
143 sched_set_fifo_low(current);
144
145 while (!kthread_should_stop()) {
146 unsigned long expire_time;
147
148 /* round robin to cpus */
149 expire_time = last_jiffies + round_robin_time * HZ;
150 if (time_before(expire_time, jiffies)) {
151 last_jiffies = jiffies;
152 round_robin_cpu(tsk_index);
153 }
154
155 do_sleep = 0;
156
157 expire_time = jiffies + HZ * (100 - idle_pct) / 100;
158
159 while (!need_resched()) {
160 if (tsc_detected_unstable && !tsc_marked_unstable) {
161 /* TSC could halt in idle, so notify users */
162 mark_tsc_unstable("TSC halts in idle");
163 tsc_marked_unstable = 1;
164 }
165 local_irq_disable();
166 tick_broadcast_enable();
167 tick_broadcast_enter();
168 stop_critical_timings();
169
170 mwait_idle_with_hints(power_saving_mwait_eax, 1);
171
172 start_critical_timings();
173 tick_broadcast_exit();
174 local_irq_enable();
175
176 if (time_before(expire_time, jiffies)) {
177 do_sleep = 1;
178 break;
179 }
180 }
181
182 /*
183 * current sched_rt has threshold for rt task running time.
184 * When a rt task uses 95% CPU time, the rt thread will be
185 * scheduled out for 5% CPU time to not starve other tasks. But
186 * the mechanism only works when all CPUs have RT task running,
187 * as if one CPU hasn't RT task, RT task from other CPUs will
188 * borrow CPU time from this CPU and cause RT task use > 95%
189 * CPU time. To make 'avoid starvation' work, takes a nap here.
190 */
191 if (unlikely(do_sleep))
192 schedule_timeout_killable(HZ * idle_pct / 100);
193
194 /* If an external event has set the need_resched flag, then
195 * we need to deal with it, or this loop will continue to
196 * spin without calling __mwait().
197 */
198 if (unlikely(need_resched()))
199 schedule();
200 }
201
202 exit_round_robin(tsk_index);
203 return 0;
204 }
205
206 static struct task_struct *ps_tsks[NR_CPUS];
207 static unsigned int ps_tsk_num;
create_power_saving_task(void)208 static int create_power_saving_task(void)
209 {
210 int rc;
211
212 ps_tsks[ps_tsk_num] = kthread_run(power_saving_thread,
213 (void *)(unsigned long)ps_tsk_num,
214 "acpi_pad/%d", ps_tsk_num);
215
216 if (IS_ERR(ps_tsks[ps_tsk_num])) {
217 rc = PTR_ERR(ps_tsks[ps_tsk_num]);
218 ps_tsks[ps_tsk_num] = NULL;
219 } else {
220 rc = 0;
221 ps_tsk_num++;
222 }
223
224 return rc;
225 }
226
destroy_power_saving_task(void)227 static void destroy_power_saving_task(void)
228 {
229 if (ps_tsk_num > 0) {
230 ps_tsk_num--;
231 kthread_stop(ps_tsks[ps_tsk_num]);
232 ps_tsks[ps_tsk_num] = NULL;
233 }
234 }
235
set_power_saving_task_num(unsigned int num)236 static void set_power_saving_task_num(unsigned int num)
237 {
238 if (num > ps_tsk_num) {
239 while (ps_tsk_num < num) {
240 if (create_power_saving_task())
241 return;
242 }
243 } else if (num < ps_tsk_num) {
244 while (ps_tsk_num > num)
245 destroy_power_saving_task();
246 }
247 }
248
acpi_pad_idle_cpus(unsigned int num_cpus)249 static void acpi_pad_idle_cpus(unsigned int num_cpus)
250 {
251 get_online_cpus();
252
253 num_cpus = min_t(unsigned int, num_cpus, num_online_cpus());
254 set_power_saving_task_num(num_cpus);
255
256 put_online_cpus();
257 }
258
acpi_pad_idle_cpus_num(void)259 static uint32_t acpi_pad_idle_cpus_num(void)
260 {
261 return ps_tsk_num;
262 }
263
rrtime_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)264 static ssize_t rrtime_store(struct device *dev,
265 struct device_attribute *attr, const char *buf, size_t count)
266 {
267 unsigned long num;
268 if (kstrtoul(buf, 0, &num))
269 return -EINVAL;
270 if (num < 1 || num >= 100)
271 return -EINVAL;
272 mutex_lock(&isolated_cpus_lock);
273 round_robin_time = num;
274 mutex_unlock(&isolated_cpus_lock);
275 return count;
276 }
277
rrtime_show(struct device * dev,struct device_attribute * attr,char * buf)278 static ssize_t rrtime_show(struct device *dev,
279 struct device_attribute *attr, char *buf)
280 {
281 return scnprintf(buf, PAGE_SIZE, "%d\n", round_robin_time);
282 }
283 static DEVICE_ATTR_RW(rrtime);
284
idlepct_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)285 static ssize_t idlepct_store(struct device *dev,
286 struct device_attribute *attr, const char *buf, size_t count)
287 {
288 unsigned long num;
289 if (kstrtoul(buf, 0, &num))
290 return -EINVAL;
291 if (num < 1 || num >= 100)
292 return -EINVAL;
293 mutex_lock(&isolated_cpus_lock);
294 idle_pct = num;
295 mutex_unlock(&isolated_cpus_lock);
296 return count;
297 }
298
idlepct_show(struct device * dev,struct device_attribute * attr,char * buf)299 static ssize_t idlepct_show(struct device *dev,
300 struct device_attribute *attr, char *buf)
301 {
302 return scnprintf(buf, PAGE_SIZE, "%d\n", idle_pct);
303 }
304 static DEVICE_ATTR_RW(idlepct);
305
idlecpus_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)306 static ssize_t idlecpus_store(struct device *dev,
307 struct device_attribute *attr, const char *buf, size_t count)
308 {
309 unsigned long num;
310 if (kstrtoul(buf, 0, &num))
311 return -EINVAL;
312 mutex_lock(&isolated_cpus_lock);
313 acpi_pad_idle_cpus(num);
314 mutex_unlock(&isolated_cpus_lock);
315 return count;
316 }
317
idlecpus_show(struct device * dev,struct device_attribute * attr,char * buf)318 static ssize_t idlecpus_show(struct device *dev,
319 struct device_attribute *attr, char *buf)
320 {
321 return cpumap_print_to_pagebuf(false, buf,
322 to_cpumask(pad_busy_cpus_bits));
323 }
324
325 static DEVICE_ATTR_RW(idlecpus);
326
acpi_pad_add_sysfs(struct acpi_device * device)327 static int acpi_pad_add_sysfs(struct acpi_device *device)
328 {
329 int result;
330
331 result = device_create_file(&device->dev, &dev_attr_idlecpus);
332 if (result)
333 return -ENODEV;
334 result = device_create_file(&device->dev, &dev_attr_idlepct);
335 if (result) {
336 device_remove_file(&device->dev, &dev_attr_idlecpus);
337 return -ENODEV;
338 }
339 result = device_create_file(&device->dev, &dev_attr_rrtime);
340 if (result) {
341 device_remove_file(&device->dev, &dev_attr_idlecpus);
342 device_remove_file(&device->dev, &dev_attr_idlepct);
343 return -ENODEV;
344 }
345 return 0;
346 }
347
acpi_pad_remove_sysfs(struct acpi_device * device)348 static void acpi_pad_remove_sysfs(struct acpi_device *device)
349 {
350 device_remove_file(&device->dev, &dev_attr_idlecpus);
351 device_remove_file(&device->dev, &dev_attr_idlepct);
352 device_remove_file(&device->dev, &dev_attr_rrtime);
353 }
354
355 /*
356 * Query firmware how many CPUs should be idle
357 * return -1 on failure
358 */
acpi_pad_pur(acpi_handle handle)359 static int acpi_pad_pur(acpi_handle handle)
360 {
361 struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
362 union acpi_object *package;
363 int num = -1;
364
365 if (ACPI_FAILURE(acpi_evaluate_object(handle, "_PUR", NULL, &buffer)))
366 return num;
367
368 if (!buffer.length || !buffer.pointer)
369 return num;
370
371 package = buffer.pointer;
372
373 if (package->type == ACPI_TYPE_PACKAGE &&
374 package->package.count == 2 &&
375 package->package.elements[0].integer.value == 1) /* rev 1 */
376
377 num = package->package.elements[1].integer.value;
378
379 kfree(buffer.pointer);
380 return num;
381 }
382
acpi_pad_handle_notify(acpi_handle handle)383 static void acpi_pad_handle_notify(acpi_handle handle)
384 {
385 int num_cpus;
386 uint32_t idle_cpus;
387 struct acpi_buffer param = {
388 .length = 4,
389 .pointer = (void *)&idle_cpus,
390 };
391
392 mutex_lock(&isolated_cpus_lock);
393 num_cpus = acpi_pad_pur(handle);
394 if (num_cpus < 0) {
395 mutex_unlock(&isolated_cpus_lock);
396 return;
397 }
398 acpi_pad_idle_cpus(num_cpus);
399 idle_cpus = acpi_pad_idle_cpus_num();
400 acpi_evaluate_ost(handle, ACPI_PROCESSOR_AGGREGATOR_NOTIFY, 0, ¶m);
401 mutex_unlock(&isolated_cpus_lock);
402 }
403
acpi_pad_notify(acpi_handle handle,u32 event,void * data)404 static void acpi_pad_notify(acpi_handle handle, u32 event,
405 void *data)
406 {
407 struct acpi_device *device = data;
408
409 switch (event) {
410 case ACPI_PROCESSOR_AGGREGATOR_NOTIFY:
411 acpi_pad_handle_notify(handle);
412 acpi_bus_generate_netlink_event(device->pnp.device_class,
413 dev_name(&device->dev), event, 0);
414 break;
415 default:
416 pr_warn("Unsupported event [0x%x]\n", event);
417 break;
418 }
419 }
420
acpi_pad_add(struct acpi_device * device)421 static int acpi_pad_add(struct acpi_device *device)
422 {
423 acpi_status status;
424
425 strcpy(acpi_device_name(device), ACPI_PROCESSOR_AGGREGATOR_DEVICE_NAME);
426 strcpy(acpi_device_class(device), ACPI_PROCESSOR_AGGREGATOR_CLASS);
427
428 if (acpi_pad_add_sysfs(device))
429 return -ENODEV;
430
431 status = acpi_install_notify_handler(device->handle,
432 ACPI_DEVICE_NOTIFY, acpi_pad_notify, device);
433 if (ACPI_FAILURE(status)) {
434 acpi_pad_remove_sysfs(device);
435 return -ENODEV;
436 }
437
438 return 0;
439 }
440
acpi_pad_remove(struct acpi_device * device)441 static int acpi_pad_remove(struct acpi_device *device)
442 {
443 mutex_lock(&isolated_cpus_lock);
444 acpi_pad_idle_cpus(0);
445 mutex_unlock(&isolated_cpus_lock);
446
447 acpi_remove_notify_handler(device->handle,
448 ACPI_DEVICE_NOTIFY, acpi_pad_notify);
449 acpi_pad_remove_sysfs(device);
450 return 0;
451 }
452
453 static const struct acpi_device_id pad_device_ids[] = {
454 {"ACPI000C", 0},
455 {"", 0},
456 };
457 MODULE_DEVICE_TABLE(acpi, pad_device_ids);
458
459 static struct acpi_driver acpi_pad_driver = {
460 .name = "processor_aggregator",
461 .class = ACPI_PROCESSOR_AGGREGATOR_CLASS,
462 .ids = pad_device_ids,
463 .ops = {
464 .add = acpi_pad_add,
465 .remove = acpi_pad_remove,
466 },
467 };
468
acpi_pad_init(void)469 static int __init acpi_pad_init(void)
470 {
471 /* Xen ACPI PAD is used when running as Xen Dom0. */
472 if (xen_initial_domain())
473 return -ENODEV;
474
475 power_saving_mwait_init();
476 if (power_saving_mwait_eax == 0)
477 return -EINVAL;
478
479 return acpi_bus_register_driver(&acpi_pad_driver);
480 }
481
acpi_pad_exit(void)482 static void __exit acpi_pad_exit(void)
483 {
484 acpi_bus_unregister_driver(&acpi_pad_driver);
485 }
486
487 module_init(acpi_pad_init);
488 module_exit(acpi_pad_exit);
489 MODULE_AUTHOR("Shaohua Li<shaohua.li@intel.com>");
490 MODULE_DESCRIPTION("ACPI Processor Aggregator Driver");
491 MODULE_LICENSE("GPL");
492