• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2018-2020, The Linux Foundation. All rights reserved.
4  *
5  */
6 
7 #include <linux/delay.h>
8 #include <linux/device.h>
9 #include <linux/dma-direction.h>
10 #include <linux/dma-mapping.h>
11 #include <linux/interrupt.h>
12 #include <linux/list.h>
13 #include <linux/mhi.h>
14 #include <linux/module.h>
15 #include <linux/slab.h>
16 #include <linux/wait.h>
17 #include "internal.h"
18 
19 /*
20  * Not all MHI state transitions are synchronous. Transitions like Linkdown,
21  * SYS_ERR, and shutdown can happen anytime asynchronously. This function will
22  * transition to a new state only if we're allowed to.
23  *
24  * Priority increases as we go down. For instance, from any state in L0, the
25  * transition can be made to states in L1, L2 and L3. A notable exception to
26  * this rule is state DISABLE.  From DISABLE state we can only transition to
27  * POR state. Also, while in L2 state, user cannot jump back to previous
28  * L1 or L0 states.
29  *
30  * Valid transitions:
31  * L0: DISABLE <--> POR
32  *     POR <--> POR
33  *     POR -> M0 -> M2 --> M0
34  *     POR -> FW_DL_ERR
35  *     FW_DL_ERR <--> FW_DL_ERR
36  *     M0 <--> M0
37  *     M0 -> FW_DL_ERR
38  *     M0 -> M3_ENTER -> M3 -> M3_EXIT --> M0
39  * L1: SYS_ERR_DETECT -> SYS_ERR_PROCESS --> POR
40  * L2: SHUTDOWN_PROCESS -> DISABLE
41  * L3: LD_ERR_FATAL_DETECT <--> LD_ERR_FATAL_DETECT
42  *     LD_ERR_FATAL_DETECT -> SHUTDOWN_PROCESS
43  */
44 static struct mhi_pm_transitions const dev_state_transitions[] = {
45 	/* L0 States */
46 	{
47 		MHI_PM_DISABLE,
48 		MHI_PM_POR
49 	},
50 	{
51 		MHI_PM_POR,
52 		MHI_PM_POR | MHI_PM_DISABLE | MHI_PM_M0 |
53 		MHI_PM_SYS_ERR_DETECT | MHI_PM_SHUTDOWN_PROCESS |
54 		MHI_PM_LD_ERR_FATAL_DETECT | MHI_PM_FW_DL_ERR
55 	},
56 	{
57 		MHI_PM_M0,
58 		MHI_PM_M0 | MHI_PM_M2 | MHI_PM_M3_ENTER |
59 		MHI_PM_SYS_ERR_DETECT | MHI_PM_SHUTDOWN_PROCESS |
60 		MHI_PM_LD_ERR_FATAL_DETECT | MHI_PM_FW_DL_ERR
61 	},
62 	{
63 		MHI_PM_M2,
64 		MHI_PM_M0 | MHI_PM_SYS_ERR_DETECT | MHI_PM_SHUTDOWN_PROCESS |
65 		MHI_PM_LD_ERR_FATAL_DETECT
66 	},
67 	{
68 		MHI_PM_M3_ENTER,
69 		MHI_PM_M3 | MHI_PM_SYS_ERR_DETECT | MHI_PM_SHUTDOWN_PROCESS |
70 		MHI_PM_LD_ERR_FATAL_DETECT
71 	},
72 	{
73 		MHI_PM_M3,
74 		MHI_PM_M3_EXIT | MHI_PM_SYS_ERR_DETECT |
75 		MHI_PM_SHUTDOWN_PROCESS | MHI_PM_LD_ERR_FATAL_DETECT
76 	},
77 	{
78 		MHI_PM_M3_EXIT,
79 		MHI_PM_M0 | MHI_PM_SYS_ERR_DETECT | MHI_PM_SHUTDOWN_PROCESS |
80 		MHI_PM_LD_ERR_FATAL_DETECT
81 	},
82 	{
83 		MHI_PM_FW_DL_ERR,
84 		MHI_PM_FW_DL_ERR | MHI_PM_SYS_ERR_DETECT |
85 		MHI_PM_SHUTDOWN_PROCESS | MHI_PM_LD_ERR_FATAL_DETECT
86 	},
87 	/* L1 States */
88 	{
89 		MHI_PM_SYS_ERR_DETECT,
90 		MHI_PM_SYS_ERR_PROCESS | MHI_PM_SHUTDOWN_PROCESS |
91 		MHI_PM_LD_ERR_FATAL_DETECT
92 	},
93 	{
94 		MHI_PM_SYS_ERR_PROCESS,
95 		MHI_PM_POR | MHI_PM_SHUTDOWN_PROCESS |
96 		MHI_PM_LD_ERR_FATAL_DETECT
97 	},
98 	/* L2 States */
99 	{
100 		MHI_PM_SHUTDOWN_PROCESS,
101 		MHI_PM_DISABLE | MHI_PM_LD_ERR_FATAL_DETECT
102 	},
103 	/* L3 States */
104 	{
105 		MHI_PM_LD_ERR_FATAL_DETECT,
106 		MHI_PM_LD_ERR_FATAL_DETECT | MHI_PM_SHUTDOWN_PROCESS
107 	},
108 };
109 
mhi_tryset_pm_state(struct mhi_controller * mhi_cntrl,enum mhi_pm_state state)110 enum mhi_pm_state __must_check mhi_tryset_pm_state(struct mhi_controller *mhi_cntrl,
111 						   enum mhi_pm_state state)
112 {
113 	unsigned long cur_state = mhi_cntrl->pm_state;
114 	int index = find_last_bit(&cur_state, 32);
115 
116 	if (unlikely(index >= ARRAY_SIZE(dev_state_transitions)))
117 		return cur_state;
118 
119 	if (unlikely(dev_state_transitions[index].from_state != cur_state))
120 		return cur_state;
121 
122 	if (unlikely(!(dev_state_transitions[index].to_states & state)))
123 		return cur_state;
124 
125 	mhi_cntrl->pm_state = state;
126 	return mhi_cntrl->pm_state;
127 }
128 
mhi_set_mhi_state(struct mhi_controller * mhi_cntrl,enum mhi_state state)129 void mhi_set_mhi_state(struct mhi_controller *mhi_cntrl, enum mhi_state state)
130 {
131 	if (state == MHI_STATE_RESET) {
132 		mhi_write_reg_field(mhi_cntrl, mhi_cntrl->regs, MHICTRL,
133 				    MHICTRL_RESET_MASK, MHICTRL_RESET_SHIFT, 1);
134 	} else {
135 		mhi_write_reg_field(mhi_cntrl, mhi_cntrl->regs, MHICTRL,
136 				    MHICTRL_MHISTATE_MASK,
137 				    MHICTRL_MHISTATE_SHIFT, state);
138 	}
139 }
140 
141 /* NOP for backward compatibility, host allowed to ring DB in M2 state */
mhi_toggle_dev_wake_nop(struct mhi_controller * mhi_cntrl)142 static void mhi_toggle_dev_wake_nop(struct mhi_controller *mhi_cntrl)
143 {
144 }
145 
mhi_toggle_dev_wake(struct mhi_controller * mhi_cntrl)146 static void mhi_toggle_dev_wake(struct mhi_controller *mhi_cntrl)
147 {
148 	mhi_cntrl->wake_get(mhi_cntrl, false);
149 	mhi_cntrl->wake_put(mhi_cntrl, true);
150 }
151 
152 /* Handle device ready state transition */
mhi_ready_state_transition(struct mhi_controller * mhi_cntrl)153 int mhi_ready_state_transition(struct mhi_controller *mhi_cntrl)
154 {
155 	void __iomem *base = mhi_cntrl->regs;
156 	struct mhi_event *mhi_event;
157 	enum mhi_pm_state cur_state;
158 	struct device *dev = &mhi_cntrl->mhi_dev->dev;
159 	u32 reset = 1, ready = 0;
160 	int ret, i;
161 
162 	/* Wait for RESET to be cleared and READY bit to be set by the device */
163 	wait_event_timeout(mhi_cntrl->state_event,
164 			   MHI_PM_IN_FATAL_STATE(mhi_cntrl->pm_state) ||
165 			   mhi_read_reg_field(mhi_cntrl, base, MHICTRL,
166 					      MHICTRL_RESET_MASK,
167 					      MHICTRL_RESET_SHIFT, &reset) ||
168 			   mhi_read_reg_field(mhi_cntrl, base, MHISTATUS,
169 					      MHISTATUS_READY_MASK,
170 					      MHISTATUS_READY_SHIFT, &ready) ||
171 			   (!reset && ready),
172 			   msecs_to_jiffies(mhi_cntrl->timeout_ms));
173 
174 	/* Check if device entered error state */
175 	if (MHI_PM_IN_FATAL_STATE(mhi_cntrl->pm_state)) {
176 		dev_err(dev, "Device link is not accessible\n");
177 		return -EIO;
178 	}
179 
180 	/* Timeout if device did not transition to ready state */
181 	if (reset || !ready) {
182 		dev_err(dev, "Device Ready timeout\n");
183 		return -ETIMEDOUT;
184 	}
185 
186 	dev_dbg(dev, "Device in READY State\n");
187 	write_lock_irq(&mhi_cntrl->pm_lock);
188 	cur_state = mhi_tryset_pm_state(mhi_cntrl, MHI_PM_POR);
189 	mhi_cntrl->dev_state = MHI_STATE_READY;
190 	write_unlock_irq(&mhi_cntrl->pm_lock);
191 
192 	if (cur_state != MHI_PM_POR) {
193 		dev_err(dev, "Error moving to state %s from %s\n",
194 			to_mhi_pm_state_str(MHI_PM_POR),
195 			to_mhi_pm_state_str(cur_state));
196 		return -EIO;
197 	}
198 
199 	read_lock_bh(&mhi_cntrl->pm_lock);
200 	if (!MHI_REG_ACCESS_VALID(mhi_cntrl->pm_state)) {
201 		dev_err(dev, "Device registers not accessible\n");
202 		goto error_mmio;
203 	}
204 
205 	/* Configure MMIO registers */
206 	ret = mhi_init_mmio(mhi_cntrl);
207 	if (ret) {
208 		dev_err(dev, "Error configuring MMIO registers\n");
209 		goto error_mmio;
210 	}
211 
212 	/* Add elements to all SW event rings */
213 	mhi_event = mhi_cntrl->mhi_event;
214 	for (i = 0; i < mhi_cntrl->total_ev_rings; i++, mhi_event++) {
215 		struct mhi_ring *ring = &mhi_event->ring;
216 
217 		/* Skip if this is an offload or HW event */
218 		if (mhi_event->offload_ev || mhi_event->hw_ring)
219 			continue;
220 
221 		ring->wp = ring->base + ring->len - ring->el_size;
222 		*ring->ctxt_wp = ring->iommu_base + ring->len - ring->el_size;
223 		/* Update all cores */
224 		smp_wmb();
225 
226 		/* Ring the event ring db */
227 		spin_lock_irq(&mhi_event->lock);
228 		mhi_ring_er_db(mhi_event);
229 		spin_unlock_irq(&mhi_event->lock);
230 	}
231 
232 	/* Set MHI to M0 state */
233 	mhi_set_mhi_state(mhi_cntrl, MHI_STATE_M0);
234 	read_unlock_bh(&mhi_cntrl->pm_lock);
235 
236 	return 0;
237 
238 error_mmio:
239 	read_unlock_bh(&mhi_cntrl->pm_lock);
240 
241 	return -EIO;
242 }
243 
mhi_pm_m0_transition(struct mhi_controller * mhi_cntrl)244 int mhi_pm_m0_transition(struct mhi_controller *mhi_cntrl)
245 {
246 	enum mhi_pm_state cur_state;
247 	struct mhi_chan *mhi_chan;
248 	struct device *dev = &mhi_cntrl->mhi_dev->dev;
249 	int i;
250 
251 	write_lock_irq(&mhi_cntrl->pm_lock);
252 	mhi_cntrl->dev_state = MHI_STATE_M0;
253 	cur_state = mhi_tryset_pm_state(mhi_cntrl, MHI_PM_M0);
254 	write_unlock_irq(&mhi_cntrl->pm_lock);
255 	if (unlikely(cur_state != MHI_PM_M0)) {
256 		dev_err(dev, "Unable to transition to M0 state\n");
257 		return -EIO;
258 	}
259 	mhi_cntrl->M0++;
260 
261 	/* Wake up the device */
262 	read_lock_bh(&mhi_cntrl->pm_lock);
263 	mhi_cntrl->wake_get(mhi_cntrl, true);
264 
265 	/* Ring all event rings and CMD ring only if we're in mission mode */
266 	if (MHI_IN_MISSION_MODE(mhi_cntrl->ee)) {
267 		struct mhi_event *mhi_event = mhi_cntrl->mhi_event;
268 		struct mhi_cmd *mhi_cmd =
269 			&mhi_cntrl->mhi_cmd[PRIMARY_CMD_RING];
270 
271 		for (i = 0; i < mhi_cntrl->total_ev_rings; i++, mhi_event++) {
272 			if (mhi_event->offload_ev)
273 				continue;
274 
275 			spin_lock_irq(&mhi_event->lock);
276 			mhi_ring_er_db(mhi_event);
277 			spin_unlock_irq(&mhi_event->lock);
278 		}
279 
280 		/* Only ring primary cmd ring if ring is not empty */
281 		spin_lock_irq(&mhi_cmd->lock);
282 		if (mhi_cmd->ring.rp != mhi_cmd->ring.wp)
283 			mhi_ring_cmd_db(mhi_cntrl, mhi_cmd);
284 		spin_unlock_irq(&mhi_cmd->lock);
285 	}
286 
287 	/* Ring channel DB registers */
288 	mhi_chan = mhi_cntrl->mhi_chan;
289 	for (i = 0; i < mhi_cntrl->max_chan; i++, mhi_chan++) {
290 		struct mhi_ring *tre_ring = &mhi_chan->tre_ring;
291 
292 		if (mhi_chan->db_cfg.reset_req) {
293 			write_lock_irq(&mhi_chan->lock);
294 			mhi_chan->db_cfg.db_mode = true;
295 			write_unlock_irq(&mhi_chan->lock);
296 		}
297 
298 		read_lock_irq(&mhi_chan->lock);
299 
300 		/* Only ring DB if ring is not empty */
301 		if (tre_ring->base && tre_ring->wp  != tre_ring->rp)
302 			mhi_ring_chan_db(mhi_cntrl, mhi_chan);
303 		read_unlock_irq(&mhi_chan->lock);
304 	}
305 
306 	mhi_cntrl->wake_put(mhi_cntrl, false);
307 	read_unlock_bh(&mhi_cntrl->pm_lock);
308 	wake_up_all(&mhi_cntrl->state_event);
309 
310 	return 0;
311 }
312 
313 /*
314  * After receiving the MHI state change event from the device indicating the
315  * transition to M1 state, the host can transition the device to M2 state
316  * for keeping it in low power state.
317  */
mhi_pm_m1_transition(struct mhi_controller * mhi_cntrl)318 void mhi_pm_m1_transition(struct mhi_controller *mhi_cntrl)
319 {
320 	enum mhi_pm_state state;
321 	struct device *dev = &mhi_cntrl->mhi_dev->dev;
322 
323 	write_lock_irq(&mhi_cntrl->pm_lock);
324 	state = mhi_tryset_pm_state(mhi_cntrl, MHI_PM_M2);
325 	if (state == MHI_PM_M2) {
326 		mhi_set_mhi_state(mhi_cntrl, MHI_STATE_M2);
327 		mhi_cntrl->dev_state = MHI_STATE_M2;
328 
329 		write_unlock_irq(&mhi_cntrl->pm_lock);
330 
331 		mhi_cntrl->M2++;
332 		wake_up_all(&mhi_cntrl->state_event);
333 
334 		/* If there are any pending resources, exit M2 immediately */
335 		if (unlikely(atomic_read(&mhi_cntrl->pending_pkts) ||
336 			     atomic_read(&mhi_cntrl->dev_wake))) {
337 			dev_dbg(dev,
338 				"Exiting M2, pending_pkts: %d dev_wake: %d\n",
339 				atomic_read(&mhi_cntrl->pending_pkts),
340 				atomic_read(&mhi_cntrl->dev_wake));
341 			read_lock_bh(&mhi_cntrl->pm_lock);
342 			mhi_cntrl->wake_get(mhi_cntrl, true);
343 			mhi_cntrl->wake_put(mhi_cntrl, true);
344 			read_unlock_bh(&mhi_cntrl->pm_lock);
345 		} else {
346 			mhi_cntrl->status_cb(mhi_cntrl, MHI_CB_IDLE);
347 		}
348 	} else {
349 		write_unlock_irq(&mhi_cntrl->pm_lock);
350 	}
351 }
352 
353 /* MHI M3 completion handler */
mhi_pm_m3_transition(struct mhi_controller * mhi_cntrl)354 int mhi_pm_m3_transition(struct mhi_controller *mhi_cntrl)
355 {
356 	enum mhi_pm_state state;
357 	struct device *dev = &mhi_cntrl->mhi_dev->dev;
358 
359 	write_lock_irq(&mhi_cntrl->pm_lock);
360 	mhi_cntrl->dev_state = MHI_STATE_M3;
361 	state = mhi_tryset_pm_state(mhi_cntrl, MHI_PM_M3);
362 	write_unlock_irq(&mhi_cntrl->pm_lock);
363 	if (state != MHI_PM_M3) {
364 		dev_err(dev, "Unable to transition to M3 state\n");
365 		return -EIO;
366 	}
367 
368 	mhi_cntrl->M3++;
369 	wake_up_all(&mhi_cntrl->state_event);
370 
371 	return 0;
372 }
373 
374 /* Handle device Mission Mode transition */
mhi_pm_mission_mode_transition(struct mhi_controller * mhi_cntrl)375 static int mhi_pm_mission_mode_transition(struct mhi_controller *mhi_cntrl)
376 {
377 	struct mhi_event *mhi_event;
378 	struct device *dev = &mhi_cntrl->mhi_dev->dev;
379 	enum mhi_ee_type current_ee = mhi_cntrl->ee;
380 	int i, ret;
381 
382 	dev_dbg(dev, "Processing Mission Mode transition\n");
383 
384 	write_lock_irq(&mhi_cntrl->pm_lock);
385 	if (MHI_REG_ACCESS_VALID(mhi_cntrl->pm_state))
386 		mhi_cntrl->ee = mhi_get_exec_env(mhi_cntrl);
387 	write_unlock_irq(&mhi_cntrl->pm_lock);
388 
389 	if (!MHI_IN_MISSION_MODE(mhi_cntrl->ee))
390 		return -EIO;
391 
392 	wake_up_all(&mhi_cntrl->state_event);
393 
394 	device_for_each_child(&mhi_cntrl->mhi_dev->dev, &current_ee,
395 			      mhi_destroy_device);
396 	mhi_cntrl->status_cb(mhi_cntrl, MHI_CB_EE_MISSION_MODE);
397 
398 	/* Force MHI to be in M0 state before continuing */
399 	ret = __mhi_device_get_sync(mhi_cntrl);
400 	if (ret)
401 		return ret;
402 
403 	read_lock_bh(&mhi_cntrl->pm_lock);
404 
405 	if (MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state)) {
406 		ret = -EIO;
407 		goto error_mission_mode;
408 	}
409 
410 	/* Add elements to all HW event rings */
411 	mhi_event = mhi_cntrl->mhi_event;
412 	for (i = 0; i < mhi_cntrl->total_ev_rings; i++, mhi_event++) {
413 		struct mhi_ring *ring = &mhi_event->ring;
414 
415 		if (mhi_event->offload_ev || !mhi_event->hw_ring)
416 			continue;
417 
418 		ring->wp = ring->base + ring->len - ring->el_size;
419 		*ring->ctxt_wp = ring->iommu_base + ring->len - ring->el_size;
420 		/* Update to all cores */
421 		smp_wmb();
422 
423 		spin_lock_irq(&mhi_event->lock);
424 		if (MHI_DB_ACCESS_VALID(mhi_cntrl))
425 			mhi_ring_er_db(mhi_event);
426 		spin_unlock_irq(&mhi_event->lock);
427 	}
428 
429 	read_unlock_bh(&mhi_cntrl->pm_lock);
430 
431 	/*
432 	 * The MHI devices are only created when the client device switches its
433 	 * Execution Environment (EE) to either SBL or AMSS states
434 	 */
435 	mhi_create_devices(mhi_cntrl);
436 
437 	read_lock_bh(&mhi_cntrl->pm_lock);
438 
439 error_mission_mode:
440 	mhi_cntrl->wake_put(mhi_cntrl, false);
441 	read_unlock_bh(&mhi_cntrl->pm_lock);
442 
443 	return ret;
444 }
445 
446 /* Handle SYS_ERR and Shutdown transitions */
mhi_pm_disable_transition(struct mhi_controller * mhi_cntrl,enum mhi_pm_state transition_state)447 static void mhi_pm_disable_transition(struct mhi_controller *mhi_cntrl,
448 				      enum mhi_pm_state transition_state)
449 {
450 	enum mhi_pm_state cur_state, prev_state;
451 	struct mhi_event *mhi_event;
452 	struct mhi_cmd_ctxt *cmd_ctxt;
453 	struct mhi_cmd *mhi_cmd;
454 	struct mhi_event_ctxt *er_ctxt;
455 	struct device *dev = &mhi_cntrl->mhi_dev->dev;
456 	int ret, i;
457 
458 	dev_dbg(dev, "Transitioning from PM state: %s to: %s\n",
459 		to_mhi_pm_state_str(mhi_cntrl->pm_state),
460 		to_mhi_pm_state_str(transition_state));
461 
462 	/* We must notify MHI control driver so it can clean up first */
463 	if (transition_state == MHI_PM_SYS_ERR_PROCESS)
464 		mhi_cntrl->status_cb(mhi_cntrl, MHI_CB_SYS_ERROR);
465 
466 	mutex_lock(&mhi_cntrl->pm_mutex);
467 	write_lock_irq(&mhi_cntrl->pm_lock);
468 	prev_state = mhi_cntrl->pm_state;
469 	cur_state = mhi_tryset_pm_state(mhi_cntrl, transition_state);
470 	if (cur_state == transition_state) {
471 		mhi_cntrl->ee = MHI_EE_DISABLE_TRANSITION;
472 		mhi_cntrl->dev_state = MHI_STATE_RESET;
473 	}
474 	write_unlock_irq(&mhi_cntrl->pm_lock);
475 
476 	/* Wake up threads waiting for state transition */
477 	wake_up_all(&mhi_cntrl->state_event);
478 
479 	if (cur_state != transition_state) {
480 		dev_err(dev, "Failed to transition to state: %s from: %s\n",
481 			to_mhi_pm_state_str(transition_state),
482 			to_mhi_pm_state_str(cur_state));
483 		mutex_unlock(&mhi_cntrl->pm_mutex);
484 		return;
485 	}
486 
487 	/* Trigger MHI RESET so that the device will not access host memory */
488 	if (MHI_REG_ACCESS_VALID(prev_state)) {
489 		u32 in_reset = -1;
490 		unsigned long timeout = msecs_to_jiffies(mhi_cntrl->timeout_ms);
491 
492 		dev_dbg(dev, "Triggering MHI Reset in device\n");
493 		mhi_set_mhi_state(mhi_cntrl, MHI_STATE_RESET);
494 
495 		/* Wait for the reset bit to be cleared by the device */
496 		ret = wait_event_timeout(mhi_cntrl->state_event,
497 					 mhi_read_reg_field(mhi_cntrl,
498 							    mhi_cntrl->regs,
499 							    MHICTRL,
500 							    MHICTRL_RESET_MASK,
501 							    MHICTRL_RESET_SHIFT,
502 							    &in_reset) ||
503 					!in_reset, timeout);
504 		if ((!ret || in_reset) && cur_state == MHI_PM_SYS_ERR_PROCESS) {
505 			dev_err(dev, "Device failed to exit MHI Reset state\n");
506 			mutex_unlock(&mhi_cntrl->pm_mutex);
507 			return;
508 		}
509 
510 		/*
511 		 * Device will clear BHI_INTVEC as a part of RESET processing,
512 		 * hence re-program it
513 		 */
514 		mhi_write_reg(mhi_cntrl, mhi_cntrl->bhi, BHI_INTVEC, 0);
515 	}
516 
517 	dev_dbg(dev,
518 		 "Waiting for all pending event ring processing to complete\n");
519 	mhi_event = mhi_cntrl->mhi_event;
520 	for (i = 0; i < mhi_cntrl->total_ev_rings; i++, mhi_event++) {
521 		if (mhi_event->offload_ev)
522 			continue;
523 		tasklet_kill(&mhi_event->task);
524 	}
525 
526 	/* Release lock and wait for all pending threads to complete */
527 	mutex_unlock(&mhi_cntrl->pm_mutex);
528 	dev_dbg(dev, "Waiting for all pending threads to complete\n");
529 	wake_up_all(&mhi_cntrl->state_event);
530 
531 	dev_dbg(dev, "Reset all active channels and remove MHI devices\n");
532 	device_for_each_child(mhi_cntrl->cntrl_dev, NULL, mhi_destroy_device);
533 
534 	mutex_lock(&mhi_cntrl->pm_mutex);
535 
536 	WARN_ON(atomic_read(&mhi_cntrl->dev_wake));
537 	WARN_ON(atomic_read(&mhi_cntrl->pending_pkts));
538 
539 	/* Reset the ev rings and cmd rings */
540 	dev_dbg(dev, "Resetting EV CTXT and CMD CTXT\n");
541 	mhi_cmd = mhi_cntrl->mhi_cmd;
542 	cmd_ctxt = mhi_cntrl->mhi_ctxt->cmd_ctxt;
543 	for (i = 0; i < NR_OF_CMD_RINGS; i++, mhi_cmd++, cmd_ctxt++) {
544 		struct mhi_ring *ring = &mhi_cmd->ring;
545 
546 		ring->rp = ring->base;
547 		ring->wp = ring->base;
548 		cmd_ctxt->rp = cmd_ctxt->rbase;
549 		cmd_ctxt->wp = cmd_ctxt->rbase;
550 	}
551 
552 	mhi_event = mhi_cntrl->mhi_event;
553 	er_ctxt = mhi_cntrl->mhi_ctxt->er_ctxt;
554 	for (i = 0; i < mhi_cntrl->total_ev_rings; i++, er_ctxt++,
555 		     mhi_event++) {
556 		struct mhi_ring *ring = &mhi_event->ring;
557 
558 		/* Skip offload events */
559 		if (mhi_event->offload_ev)
560 			continue;
561 
562 		ring->rp = ring->base;
563 		ring->wp = ring->base;
564 		er_ctxt->rp = er_ctxt->rbase;
565 		er_ctxt->wp = er_ctxt->rbase;
566 	}
567 
568 	if (cur_state == MHI_PM_SYS_ERR_PROCESS) {
569 		mhi_ready_state_transition(mhi_cntrl);
570 	} else {
571 		/* Move to disable state */
572 		write_lock_irq(&mhi_cntrl->pm_lock);
573 		cur_state = mhi_tryset_pm_state(mhi_cntrl, MHI_PM_DISABLE);
574 		write_unlock_irq(&mhi_cntrl->pm_lock);
575 		if (unlikely(cur_state != MHI_PM_DISABLE))
576 			dev_err(dev, "Error moving from PM state: %s to: %s\n",
577 				to_mhi_pm_state_str(cur_state),
578 				to_mhi_pm_state_str(MHI_PM_DISABLE));
579 	}
580 
581 	dev_dbg(dev, "Exiting with PM state: %s, MHI state: %s\n",
582 		to_mhi_pm_state_str(mhi_cntrl->pm_state),
583 		TO_MHI_STATE_STR(mhi_cntrl->dev_state));
584 
585 	mutex_unlock(&mhi_cntrl->pm_mutex);
586 }
587 
588 /* Queue a new work item and schedule work */
mhi_queue_state_transition(struct mhi_controller * mhi_cntrl,enum dev_st_transition state)589 int mhi_queue_state_transition(struct mhi_controller *mhi_cntrl,
590 			       enum dev_st_transition state)
591 {
592 	struct state_transition *item = kmalloc(sizeof(*item), GFP_ATOMIC);
593 	unsigned long flags;
594 
595 	if (!item)
596 		return -ENOMEM;
597 
598 	item->state = state;
599 	spin_lock_irqsave(&mhi_cntrl->transition_lock, flags);
600 	list_add_tail(&item->node, &mhi_cntrl->transition_list);
601 	spin_unlock_irqrestore(&mhi_cntrl->transition_lock, flags);
602 
603 	schedule_work(&mhi_cntrl->st_worker);
604 
605 	return 0;
606 }
607 
608 /* SYS_ERR worker */
mhi_pm_sys_err_handler(struct mhi_controller * mhi_cntrl)609 void mhi_pm_sys_err_handler(struct mhi_controller *mhi_cntrl)
610 {
611 	struct device *dev = &mhi_cntrl->mhi_dev->dev;
612 
613 	/* skip if controller supports RDDM */
614 	if (mhi_cntrl->rddm_image) {
615 		dev_dbg(dev, "Controller supports RDDM, skip SYS_ERROR\n");
616 		return;
617 	}
618 
619 	mhi_queue_state_transition(mhi_cntrl, DEV_ST_TRANSITION_SYS_ERR);
620 }
621 
622 /* Device State Transition worker */
mhi_pm_st_worker(struct work_struct * work)623 void mhi_pm_st_worker(struct work_struct *work)
624 {
625 	struct state_transition *itr, *tmp;
626 	LIST_HEAD(head);
627 	struct mhi_controller *mhi_cntrl = container_of(work,
628 							struct mhi_controller,
629 							st_worker);
630 	struct device *dev = &mhi_cntrl->mhi_dev->dev;
631 
632 	spin_lock_irq(&mhi_cntrl->transition_lock);
633 	list_splice_tail_init(&mhi_cntrl->transition_list, &head);
634 	spin_unlock_irq(&mhi_cntrl->transition_lock);
635 
636 	list_for_each_entry_safe(itr, tmp, &head, node) {
637 		list_del(&itr->node);
638 		dev_dbg(dev, "Handling state transition: %s\n",
639 			TO_DEV_STATE_TRANS_STR(itr->state));
640 
641 		switch (itr->state) {
642 		case DEV_ST_TRANSITION_PBL:
643 			write_lock_irq(&mhi_cntrl->pm_lock);
644 			if (MHI_REG_ACCESS_VALID(mhi_cntrl->pm_state))
645 				mhi_cntrl->ee = mhi_get_exec_env(mhi_cntrl);
646 			write_unlock_irq(&mhi_cntrl->pm_lock);
647 			if (MHI_IN_PBL(mhi_cntrl->ee))
648 				mhi_fw_load_handler(mhi_cntrl);
649 			break;
650 		case DEV_ST_TRANSITION_SBL:
651 			write_lock_irq(&mhi_cntrl->pm_lock);
652 			mhi_cntrl->ee = MHI_EE_SBL;
653 			write_unlock_irq(&mhi_cntrl->pm_lock);
654 			/*
655 			 * The MHI devices are only created when the client
656 			 * device switches its Execution Environment (EE) to
657 			 * either SBL or AMSS states
658 			 */
659 			mhi_create_devices(mhi_cntrl);
660 			break;
661 		case DEV_ST_TRANSITION_MISSION_MODE:
662 			mhi_pm_mission_mode_transition(mhi_cntrl);
663 			break;
664 		case DEV_ST_TRANSITION_READY:
665 			mhi_ready_state_transition(mhi_cntrl);
666 			break;
667 		case DEV_ST_TRANSITION_SYS_ERR:
668 			mhi_pm_disable_transition
669 				(mhi_cntrl, MHI_PM_SYS_ERR_PROCESS);
670 			break;
671 		case DEV_ST_TRANSITION_DISABLE:
672 			mhi_pm_disable_transition
673 				(mhi_cntrl, MHI_PM_SHUTDOWN_PROCESS);
674 			break;
675 		default:
676 			break;
677 		}
678 		kfree(itr);
679 	}
680 }
681 
mhi_pm_suspend(struct mhi_controller * mhi_cntrl)682 int mhi_pm_suspend(struct mhi_controller *mhi_cntrl)
683 {
684 	struct mhi_chan *itr, *tmp;
685 	struct device *dev = &mhi_cntrl->mhi_dev->dev;
686 	enum mhi_pm_state new_state;
687 	int ret;
688 
689 	if (mhi_cntrl->pm_state == MHI_PM_DISABLE)
690 		return -EINVAL;
691 
692 	if (MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state))
693 		return -EIO;
694 
695 	/* Return busy if there are any pending resources */
696 	if (atomic_read(&mhi_cntrl->dev_wake) ||
697 	    atomic_read(&mhi_cntrl->pending_pkts))
698 		return -EBUSY;
699 
700 	/* Take MHI out of M2 state */
701 	read_lock_bh(&mhi_cntrl->pm_lock);
702 	mhi_cntrl->wake_get(mhi_cntrl, false);
703 	read_unlock_bh(&mhi_cntrl->pm_lock);
704 
705 	ret = wait_event_timeout(mhi_cntrl->state_event,
706 				 mhi_cntrl->dev_state == MHI_STATE_M0 ||
707 				 mhi_cntrl->dev_state == MHI_STATE_M1 ||
708 				 MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state),
709 				 msecs_to_jiffies(mhi_cntrl->timeout_ms));
710 
711 	read_lock_bh(&mhi_cntrl->pm_lock);
712 	mhi_cntrl->wake_put(mhi_cntrl, false);
713 	read_unlock_bh(&mhi_cntrl->pm_lock);
714 
715 	if (!ret || MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state)) {
716 		dev_err(dev,
717 			"Could not enter M0/M1 state");
718 		return -EIO;
719 	}
720 
721 	write_lock_irq(&mhi_cntrl->pm_lock);
722 
723 	if (atomic_read(&mhi_cntrl->dev_wake) ||
724 	    atomic_read(&mhi_cntrl->pending_pkts)) {
725 		write_unlock_irq(&mhi_cntrl->pm_lock);
726 		return -EBUSY;
727 	}
728 
729 	dev_info(dev, "Allowing M3 transition\n");
730 	new_state = mhi_tryset_pm_state(mhi_cntrl, MHI_PM_M3_ENTER);
731 	if (new_state != MHI_PM_M3_ENTER) {
732 		write_unlock_irq(&mhi_cntrl->pm_lock);
733 		dev_err(dev,
734 			"Error setting to PM state: %s from: %s\n",
735 			to_mhi_pm_state_str(MHI_PM_M3_ENTER),
736 			to_mhi_pm_state_str(mhi_cntrl->pm_state));
737 		return -EIO;
738 	}
739 
740 	/* Set MHI to M3 and wait for completion */
741 	mhi_set_mhi_state(mhi_cntrl, MHI_STATE_M3);
742 	write_unlock_irq(&mhi_cntrl->pm_lock);
743 	dev_info(dev, "Wait for M3 completion\n");
744 
745 	ret = wait_event_timeout(mhi_cntrl->state_event,
746 				 mhi_cntrl->dev_state == MHI_STATE_M3 ||
747 				 MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state),
748 				 msecs_to_jiffies(mhi_cntrl->timeout_ms));
749 
750 	if (!ret || MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state)) {
751 		dev_err(dev,
752 			"Did not enter M3 state, MHI state: %s, PM state: %s\n",
753 			TO_MHI_STATE_STR(mhi_cntrl->dev_state),
754 			to_mhi_pm_state_str(mhi_cntrl->pm_state));
755 		return -EIO;
756 	}
757 
758 	/* Notify clients about entering LPM */
759 	list_for_each_entry_safe(itr, tmp, &mhi_cntrl->lpm_chans, node) {
760 		mutex_lock(&itr->mutex);
761 		if (itr->mhi_dev)
762 			mhi_notify(itr->mhi_dev, MHI_CB_LPM_ENTER);
763 		mutex_unlock(&itr->mutex);
764 	}
765 
766 	return 0;
767 }
768 EXPORT_SYMBOL_GPL(mhi_pm_suspend);
769 
mhi_pm_resume(struct mhi_controller * mhi_cntrl)770 int mhi_pm_resume(struct mhi_controller *mhi_cntrl)
771 {
772 	struct mhi_chan *itr, *tmp;
773 	struct device *dev = &mhi_cntrl->mhi_dev->dev;
774 	enum mhi_pm_state cur_state;
775 	int ret;
776 
777 	dev_info(dev, "Entered with PM state: %s, MHI state: %s\n",
778 		 to_mhi_pm_state_str(mhi_cntrl->pm_state),
779 		 TO_MHI_STATE_STR(mhi_cntrl->dev_state));
780 
781 	if (mhi_cntrl->pm_state == MHI_PM_DISABLE)
782 		return 0;
783 
784 	if (MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state))
785 		return -EIO;
786 
787 	/* Notify clients about exiting LPM */
788 	list_for_each_entry_safe(itr, tmp, &mhi_cntrl->lpm_chans, node) {
789 		mutex_lock(&itr->mutex);
790 		if (itr->mhi_dev)
791 			mhi_notify(itr->mhi_dev, MHI_CB_LPM_EXIT);
792 		mutex_unlock(&itr->mutex);
793 	}
794 
795 	write_lock_irq(&mhi_cntrl->pm_lock);
796 	cur_state = mhi_tryset_pm_state(mhi_cntrl, MHI_PM_M3_EXIT);
797 	if (cur_state != MHI_PM_M3_EXIT) {
798 		write_unlock_irq(&mhi_cntrl->pm_lock);
799 		dev_info(dev,
800 			 "Error setting to PM state: %s from: %s\n",
801 			 to_mhi_pm_state_str(MHI_PM_M3_EXIT),
802 			 to_mhi_pm_state_str(mhi_cntrl->pm_state));
803 		return -EIO;
804 	}
805 
806 	/* Set MHI to M0 and wait for completion */
807 	mhi_set_mhi_state(mhi_cntrl, MHI_STATE_M0);
808 	write_unlock_irq(&mhi_cntrl->pm_lock);
809 
810 	ret = wait_event_timeout(mhi_cntrl->state_event,
811 				 mhi_cntrl->dev_state == MHI_STATE_M0 ||
812 				 mhi_cntrl->dev_state == MHI_STATE_M2 ||
813 				 MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state),
814 				 msecs_to_jiffies(mhi_cntrl->timeout_ms));
815 
816 	if (!ret || MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state)) {
817 		dev_err(dev,
818 			"Did not enter M0 state, MHI state: %s, PM state: %s\n",
819 			TO_MHI_STATE_STR(mhi_cntrl->dev_state),
820 			to_mhi_pm_state_str(mhi_cntrl->pm_state));
821 		return -EIO;
822 	}
823 
824 	return 0;
825 }
826 EXPORT_SYMBOL_GPL(mhi_pm_resume);
827 
__mhi_device_get_sync(struct mhi_controller * mhi_cntrl)828 int __mhi_device_get_sync(struct mhi_controller *mhi_cntrl)
829 {
830 	int ret;
831 
832 	/* Wake up the device */
833 	read_lock_bh(&mhi_cntrl->pm_lock);
834 	mhi_cntrl->wake_get(mhi_cntrl, true);
835 	if (MHI_PM_IN_SUSPEND_STATE(mhi_cntrl->pm_state))
836 		mhi_trigger_resume(mhi_cntrl);
837 	read_unlock_bh(&mhi_cntrl->pm_lock);
838 
839 	ret = wait_event_timeout(mhi_cntrl->state_event,
840 				 mhi_cntrl->pm_state == MHI_PM_M0 ||
841 				 MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state),
842 				 msecs_to_jiffies(mhi_cntrl->timeout_ms));
843 
844 	if (!ret || MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state)) {
845 		read_lock_bh(&mhi_cntrl->pm_lock);
846 		mhi_cntrl->wake_put(mhi_cntrl, false);
847 		read_unlock_bh(&mhi_cntrl->pm_lock);
848 		return -EIO;
849 	}
850 
851 	return 0;
852 }
853 
854 /* Assert device wake db */
mhi_assert_dev_wake(struct mhi_controller * mhi_cntrl,bool force)855 static void mhi_assert_dev_wake(struct mhi_controller *mhi_cntrl, bool force)
856 {
857 	unsigned long flags;
858 
859 	/*
860 	 * If force flag is set, then increment the wake count value and
861 	 * ring wake db
862 	 */
863 	if (unlikely(force)) {
864 		spin_lock_irqsave(&mhi_cntrl->wlock, flags);
865 		atomic_inc(&mhi_cntrl->dev_wake);
866 		if (MHI_WAKE_DB_FORCE_SET_VALID(mhi_cntrl->pm_state) &&
867 		    !mhi_cntrl->wake_set) {
868 			mhi_write_db(mhi_cntrl, mhi_cntrl->wake_db, 1);
869 			mhi_cntrl->wake_set = true;
870 		}
871 		spin_unlock_irqrestore(&mhi_cntrl->wlock, flags);
872 	} else {
873 		/*
874 		 * If resources are already requested, then just increment
875 		 * the wake count value and return
876 		 */
877 		if (likely(atomic_add_unless(&mhi_cntrl->dev_wake, 1, 0)))
878 			return;
879 
880 		spin_lock_irqsave(&mhi_cntrl->wlock, flags);
881 		if ((atomic_inc_return(&mhi_cntrl->dev_wake) == 1) &&
882 		    MHI_WAKE_DB_SET_VALID(mhi_cntrl->pm_state) &&
883 		    !mhi_cntrl->wake_set) {
884 			mhi_write_db(mhi_cntrl, mhi_cntrl->wake_db, 1);
885 			mhi_cntrl->wake_set = true;
886 		}
887 		spin_unlock_irqrestore(&mhi_cntrl->wlock, flags);
888 	}
889 }
890 
891 /* De-assert device wake db */
mhi_deassert_dev_wake(struct mhi_controller * mhi_cntrl,bool override)892 static void mhi_deassert_dev_wake(struct mhi_controller *mhi_cntrl,
893 				  bool override)
894 {
895 	unsigned long flags;
896 
897 	/*
898 	 * Only continue if there is a single resource, else just decrement
899 	 * and return
900 	 */
901 	if (likely(atomic_add_unless(&mhi_cntrl->dev_wake, -1, 1)))
902 		return;
903 
904 	spin_lock_irqsave(&mhi_cntrl->wlock, flags);
905 	if ((atomic_dec_return(&mhi_cntrl->dev_wake) == 0) &&
906 	    MHI_WAKE_DB_CLEAR_VALID(mhi_cntrl->pm_state) && !override &&
907 	    mhi_cntrl->wake_set) {
908 		mhi_write_db(mhi_cntrl, mhi_cntrl->wake_db, 0);
909 		mhi_cntrl->wake_set = false;
910 	}
911 	spin_unlock_irqrestore(&mhi_cntrl->wlock, flags);
912 }
913 
mhi_async_power_up(struct mhi_controller * mhi_cntrl)914 int mhi_async_power_up(struct mhi_controller *mhi_cntrl)
915 {
916 	enum mhi_state state;
917 	enum mhi_ee_type current_ee;
918 	enum dev_st_transition next_state;
919 	struct device *dev = &mhi_cntrl->mhi_dev->dev;
920 	u32 val;
921 	int ret;
922 
923 	dev_info(dev, "Requested to power ON\n");
924 
925 	if (mhi_cntrl->nr_irqs < 1)
926 		return -EINVAL;
927 
928 	/* Supply default wake routines if not provided by controller driver */
929 	if (!mhi_cntrl->wake_get || !mhi_cntrl->wake_put ||
930 	    !mhi_cntrl->wake_toggle) {
931 		mhi_cntrl->wake_get = mhi_assert_dev_wake;
932 		mhi_cntrl->wake_put = mhi_deassert_dev_wake;
933 		mhi_cntrl->wake_toggle = (mhi_cntrl->db_access & MHI_PM_M2) ?
934 			mhi_toggle_dev_wake_nop : mhi_toggle_dev_wake;
935 	}
936 
937 	mutex_lock(&mhi_cntrl->pm_mutex);
938 	mhi_cntrl->pm_state = MHI_PM_DISABLE;
939 
940 	if (!mhi_cntrl->pre_init) {
941 		/* Setup device context */
942 		ret = mhi_init_dev_ctxt(mhi_cntrl);
943 		if (ret)
944 			goto error_dev_ctxt;
945 	}
946 
947 	ret = mhi_init_irq_setup(mhi_cntrl);
948 	if (ret)
949 		goto error_setup_irq;
950 
951 	/* Setup BHI offset & INTVEC */
952 	write_lock_irq(&mhi_cntrl->pm_lock);
953 	ret = mhi_read_reg(mhi_cntrl, mhi_cntrl->regs, BHIOFF, &val);
954 	if (ret) {
955 		write_unlock_irq(&mhi_cntrl->pm_lock);
956 		goto error_bhi_offset;
957 	}
958 
959 	mhi_cntrl->bhi = mhi_cntrl->regs + val;
960 
961 	/* Setup BHIE offset */
962 	if (mhi_cntrl->fbc_download) {
963 		ret = mhi_read_reg(mhi_cntrl, mhi_cntrl->regs, BHIEOFF, &val);
964 		if (ret) {
965 			write_unlock_irq(&mhi_cntrl->pm_lock);
966 			dev_err(dev, "Error reading BHIE offset\n");
967 			goto error_bhi_offset;
968 		}
969 
970 		mhi_cntrl->bhie = mhi_cntrl->regs + val;
971 	}
972 
973 	mhi_write_reg(mhi_cntrl, mhi_cntrl->bhi, BHI_INTVEC, 0);
974 	mhi_cntrl->pm_state = MHI_PM_POR;
975 	mhi_cntrl->ee = MHI_EE_MAX;
976 	current_ee = mhi_get_exec_env(mhi_cntrl);
977 	write_unlock_irq(&mhi_cntrl->pm_lock);
978 
979 	/* Confirm that the device is in valid exec env */
980 	if (!MHI_IN_PBL(current_ee) && current_ee != MHI_EE_AMSS) {
981 		dev_err(dev, "Not a valid EE for power on\n");
982 		ret = -EIO;
983 		goto error_bhi_offset;
984 	}
985 
986 	state = mhi_get_mhi_state(mhi_cntrl);
987 	if (state == MHI_STATE_SYS_ERR) {
988 		mhi_set_mhi_state(mhi_cntrl, MHI_STATE_RESET);
989 		ret = wait_event_timeout(mhi_cntrl->state_event,
990 				MHI_PM_IN_FATAL_STATE(mhi_cntrl->pm_state) ||
991 					mhi_read_reg_field(mhi_cntrl,
992 							   mhi_cntrl->regs,
993 							   MHICTRL,
994 							   MHICTRL_RESET_MASK,
995 							   MHICTRL_RESET_SHIFT,
996 							   &val) ||
997 					!val,
998 				msecs_to_jiffies(mhi_cntrl->timeout_ms));
999 		if (!ret) {
1000 			ret = -EIO;
1001 			dev_info(dev, "Failed to reset MHI due to syserr state\n");
1002 			goto error_bhi_offset;
1003 		}
1004 
1005 		/*
1006 		 * device cleares INTVEC as part of RESET processing,
1007 		 * re-program it
1008 		 */
1009 		mhi_write_reg(mhi_cntrl, mhi_cntrl->bhi, BHI_INTVEC, 0);
1010 	}
1011 
1012 	/* Transition to next state */
1013 	next_state = MHI_IN_PBL(current_ee) ?
1014 		DEV_ST_TRANSITION_PBL : DEV_ST_TRANSITION_READY;
1015 
1016 	mhi_queue_state_transition(mhi_cntrl, next_state);
1017 
1018 	mutex_unlock(&mhi_cntrl->pm_mutex);
1019 
1020 	dev_info(dev, "Power on setup success\n");
1021 
1022 	return 0;
1023 
1024 error_bhi_offset:
1025 	mhi_deinit_free_irq(mhi_cntrl);
1026 
1027 error_setup_irq:
1028 	if (!mhi_cntrl->pre_init)
1029 		mhi_deinit_dev_ctxt(mhi_cntrl);
1030 
1031 error_dev_ctxt:
1032 	mutex_unlock(&mhi_cntrl->pm_mutex);
1033 
1034 	return ret;
1035 }
1036 EXPORT_SYMBOL_GPL(mhi_async_power_up);
1037 
mhi_power_down(struct mhi_controller * mhi_cntrl,bool graceful)1038 void mhi_power_down(struct mhi_controller *mhi_cntrl, bool graceful)
1039 {
1040 	enum mhi_pm_state cur_state;
1041 	struct device *dev = &mhi_cntrl->mhi_dev->dev;
1042 
1043 	/* If it's not a graceful shutdown, force MHI to linkdown state */
1044 	if (!graceful) {
1045 		mutex_lock(&mhi_cntrl->pm_mutex);
1046 		write_lock_irq(&mhi_cntrl->pm_lock);
1047 		cur_state = mhi_tryset_pm_state(mhi_cntrl,
1048 						MHI_PM_LD_ERR_FATAL_DETECT);
1049 		write_unlock_irq(&mhi_cntrl->pm_lock);
1050 		mutex_unlock(&mhi_cntrl->pm_mutex);
1051 		if (cur_state != MHI_PM_LD_ERR_FATAL_DETECT)
1052 			dev_dbg(dev, "Failed to move to state: %s from: %s\n",
1053 				to_mhi_pm_state_str(MHI_PM_LD_ERR_FATAL_DETECT),
1054 				to_mhi_pm_state_str(mhi_cntrl->pm_state));
1055 	}
1056 
1057 	mhi_queue_state_transition(mhi_cntrl, DEV_ST_TRANSITION_DISABLE);
1058 
1059 	/* Wait for shutdown to complete */
1060 	flush_work(&mhi_cntrl->st_worker);
1061 
1062 	mhi_deinit_free_irq(mhi_cntrl);
1063 
1064 	if (!mhi_cntrl->pre_init) {
1065 		/* Free all allocated resources */
1066 		if (mhi_cntrl->fbc_image) {
1067 			mhi_free_bhie_table(mhi_cntrl, mhi_cntrl->fbc_image);
1068 			mhi_cntrl->fbc_image = NULL;
1069 		}
1070 		mhi_deinit_dev_ctxt(mhi_cntrl);
1071 	}
1072 }
1073 EXPORT_SYMBOL_GPL(mhi_power_down);
1074 
mhi_sync_power_up(struct mhi_controller * mhi_cntrl)1075 int mhi_sync_power_up(struct mhi_controller *mhi_cntrl)
1076 {
1077 	int ret = mhi_async_power_up(mhi_cntrl);
1078 
1079 	if (ret)
1080 		return ret;
1081 
1082 	wait_event_timeout(mhi_cntrl->state_event,
1083 			   MHI_IN_MISSION_MODE(mhi_cntrl->ee) ||
1084 			   MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state),
1085 			   msecs_to_jiffies(mhi_cntrl->timeout_ms));
1086 
1087 	ret = (MHI_IN_MISSION_MODE(mhi_cntrl->ee)) ? 0 : -ETIMEDOUT;
1088 	if (ret)
1089 		mhi_power_down(mhi_cntrl, false);
1090 
1091 	return ret;
1092 }
1093 EXPORT_SYMBOL(mhi_sync_power_up);
1094 
mhi_force_rddm_mode(struct mhi_controller * mhi_cntrl)1095 int mhi_force_rddm_mode(struct mhi_controller *mhi_cntrl)
1096 {
1097 	struct device *dev = &mhi_cntrl->mhi_dev->dev;
1098 	int ret;
1099 
1100 	/* Check if device is already in RDDM */
1101 	if (mhi_cntrl->ee == MHI_EE_RDDM)
1102 		return 0;
1103 
1104 	dev_dbg(dev, "Triggering SYS_ERR to force RDDM state\n");
1105 	mhi_set_mhi_state(mhi_cntrl, MHI_STATE_SYS_ERR);
1106 
1107 	/* Wait for RDDM event */
1108 	ret = wait_event_timeout(mhi_cntrl->state_event,
1109 				 mhi_cntrl->ee == MHI_EE_RDDM,
1110 				 msecs_to_jiffies(mhi_cntrl->timeout_ms));
1111 	ret = ret ? 0 : -EIO;
1112 
1113 	return ret;
1114 }
1115 EXPORT_SYMBOL_GPL(mhi_force_rddm_mode);
1116 
mhi_device_get(struct mhi_device * mhi_dev)1117 void mhi_device_get(struct mhi_device *mhi_dev)
1118 {
1119 	struct mhi_controller *mhi_cntrl = mhi_dev->mhi_cntrl;
1120 
1121 	mhi_dev->dev_wake++;
1122 	read_lock_bh(&mhi_cntrl->pm_lock);
1123 	if (MHI_PM_IN_SUSPEND_STATE(mhi_cntrl->pm_state))
1124 		mhi_trigger_resume(mhi_cntrl);
1125 
1126 	mhi_cntrl->wake_get(mhi_cntrl, true);
1127 	read_unlock_bh(&mhi_cntrl->pm_lock);
1128 }
1129 EXPORT_SYMBOL_GPL(mhi_device_get);
1130 
mhi_device_get_sync(struct mhi_device * mhi_dev)1131 int mhi_device_get_sync(struct mhi_device *mhi_dev)
1132 {
1133 	struct mhi_controller *mhi_cntrl = mhi_dev->mhi_cntrl;
1134 	int ret;
1135 
1136 	ret = __mhi_device_get_sync(mhi_cntrl);
1137 	if (!ret)
1138 		mhi_dev->dev_wake++;
1139 
1140 	return ret;
1141 }
1142 EXPORT_SYMBOL_GPL(mhi_device_get_sync);
1143 
mhi_device_put(struct mhi_device * mhi_dev)1144 void mhi_device_put(struct mhi_device *mhi_dev)
1145 {
1146 	struct mhi_controller *mhi_cntrl = mhi_dev->mhi_cntrl;
1147 
1148 	mhi_dev->dev_wake--;
1149 	read_lock_bh(&mhi_cntrl->pm_lock);
1150 	if (MHI_PM_IN_SUSPEND_STATE(mhi_cntrl->pm_state))
1151 		mhi_trigger_resume(mhi_cntrl);
1152 
1153 	mhi_cntrl->wake_put(mhi_cntrl, false);
1154 	read_unlock_bh(&mhi_cntrl->pm_lock);
1155 }
1156 EXPORT_SYMBOL_GPL(mhi_device_put);
1157