1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2018-2020, The Linux Foundation. All rights reserved.
4 *
5 */
6
7 #include <linux/delay.h>
8 #include <linux/device.h>
9 #include <linux/dma-direction.h>
10 #include <linux/dma-mapping.h>
11 #include <linux/interrupt.h>
12 #include <linux/list.h>
13 #include <linux/mhi.h>
14 #include <linux/module.h>
15 #include <linux/slab.h>
16 #include <linux/wait.h>
17 #include "internal.h"
18
19 /*
20 * Not all MHI state transitions are synchronous. Transitions like Linkdown,
21 * SYS_ERR, and shutdown can happen anytime asynchronously. This function will
22 * transition to a new state only if we're allowed to.
23 *
24 * Priority increases as we go down. For instance, from any state in L0, the
25 * transition can be made to states in L1, L2 and L3. A notable exception to
26 * this rule is state DISABLE. From DISABLE state we can only transition to
27 * POR state. Also, while in L2 state, user cannot jump back to previous
28 * L1 or L0 states.
29 *
30 * Valid transitions:
31 * L0: DISABLE <--> POR
32 * POR <--> POR
33 * POR -> M0 -> M2 --> M0
34 * POR -> FW_DL_ERR
35 * FW_DL_ERR <--> FW_DL_ERR
36 * M0 <--> M0
37 * M0 -> FW_DL_ERR
38 * M0 -> M3_ENTER -> M3 -> M3_EXIT --> M0
39 * L1: SYS_ERR_DETECT -> SYS_ERR_PROCESS --> POR
40 * L2: SHUTDOWN_PROCESS -> DISABLE
41 * L3: LD_ERR_FATAL_DETECT <--> LD_ERR_FATAL_DETECT
42 * LD_ERR_FATAL_DETECT -> SHUTDOWN_PROCESS
43 */
44 static struct mhi_pm_transitions const dev_state_transitions[] = {
45 /* L0 States */
46 {
47 MHI_PM_DISABLE,
48 MHI_PM_POR
49 },
50 {
51 MHI_PM_POR,
52 MHI_PM_POR | MHI_PM_DISABLE | MHI_PM_M0 |
53 MHI_PM_SYS_ERR_DETECT | MHI_PM_SHUTDOWN_PROCESS |
54 MHI_PM_LD_ERR_FATAL_DETECT | MHI_PM_FW_DL_ERR
55 },
56 {
57 MHI_PM_M0,
58 MHI_PM_M0 | MHI_PM_M2 | MHI_PM_M3_ENTER |
59 MHI_PM_SYS_ERR_DETECT | MHI_PM_SHUTDOWN_PROCESS |
60 MHI_PM_LD_ERR_FATAL_DETECT | MHI_PM_FW_DL_ERR
61 },
62 {
63 MHI_PM_M2,
64 MHI_PM_M0 | MHI_PM_SYS_ERR_DETECT | MHI_PM_SHUTDOWN_PROCESS |
65 MHI_PM_LD_ERR_FATAL_DETECT
66 },
67 {
68 MHI_PM_M3_ENTER,
69 MHI_PM_M3 | MHI_PM_SYS_ERR_DETECT | MHI_PM_SHUTDOWN_PROCESS |
70 MHI_PM_LD_ERR_FATAL_DETECT
71 },
72 {
73 MHI_PM_M3,
74 MHI_PM_M3_EXIT | MHI_PM_SYS_ERR_DETECT |
75 MHI_PM_SHUTDOWN_PROCESS | MHI_PM_LD_ERR_FATAL_DETECT
76 },
77 {
78 MHI_PM_M3_EXIT,
79 MHI_PM_M0 | MHI_PM_SYS_ERR_DETECT | MHI_PM_SHUTDOWN_PROCESS |
80 MHI_PM_LD_ERR_FATAL_DETECT
81 },
82 {
83 MHI_PM_FW_DL_ERR,
84 MHI_PM_FW_DL_ERR | MHI_PM_SYS_ERR_DETECT |
85 MHI_PM_SHUTDOWN_PROCESS | MHI_PM_LD_ERR_FATAL_DETECT
86 },
87 /* L1 States */
88 {
89 MHI_PM_SYS_ERR_DETECT,
90 MHI_PM_SYS_ERR_PROCESS | MHI_PM_SHUTDOWN_PROCESS |
91 MHI_PM_LD_ERR_FATAL_DETECT
92 },
93 {
94 MHI_PM_SYS_ERR_PROCESS,
95 MHI_PM_POR | MHI_PM_SHUTDOWN_PROCESS |
96 MHI_PM_LD_ERR_FATAL_DETECT
97 },
98 /* L2 States */
99 {
100 MHI_PM_SHUTDOWN_PROCESS,
101 MHI_PM_DISABLE | MHI_PM_LD_ERR_FATAL_DETECT
102 },
103 /* L3 States */
104 {
105 MHI_PM_LD_ERR_FATAL_DETECT,
106 MHI_PM_LD_ERR_FATAL_DETECT | MHI_PM_SHUTDOWN_PROCESS
107 },
108 };
109
mhi_tryset_pm_state(struct mhi_controller * mhi_cntrl,enum mhi_pm_state state)110 enum mhi_pm_state __must_check mhi_tryset_pm_state(struct mhi_controller *mhi_cntrl,
111 enum mhi_pm_state state)
112 {
113 unsigned long cur_state = mhi_cntrl->pm_state;
114 int index = find_last_bit(&cur_state, 32);
115
116 if (unlikely(index >= ARRAY_SIZE(dev_state_transitions)))
117 return cur_state;
118
119 if (unlikely(dev_state_transitions[index].from_state != cur_state))
120 return cur_state;
121
122 if (unlikely(!(dev_state_transitions[index].to_states & state)))
123 return cur_state;
124
125 mhi_cntrl->pm_state = state;
126 return mhi_cntrl->pm_state;
127 }
128
mhi_set_mhi_state(struct mhi_controller * mhi_cntrl,enum mhi_state state)129 void mhi_set_mhi_state(struct mhi_controller *mhi_cntrl, enum mhi_state state)
130 {
131 if (state == MHI_STATE_RESET) {
132 mhi_write_reg_field(mhi_cntrl, mhi_cntrl->regs, MHICTRL,
133 MHICTRL_RESET_MASK, MHICTRL_RESET_SHIFT, 1);
134 } else {
135 mhi_write_reg_field(mhi_cntrl, mhi_cntrl->regs, MHICTRL,
136 MHICTRL_MHISTATE_MASK,
137 MHICTRL_MHISTATE_SHIFT, state);
138 }
139 }
140
141 /* NOP for backward compatibility, host allowed to ring DB in M2 state */
mhi_toggle_dev_wake_nop(struct mhi_controller * mhi_cntrl)142 static void mhi_toggle_dev_wake_nop(struct mhi_controller *mhi_cntrl)
143 {
144 }
145
mhi_toggle_dev_wake(struct mhi_controller * mhi_cntrl)146 static void mhi_toggle_dev_wake(struct mhi_controller *mhi_cntrl)
147 {
148 mhi_cntrl->wake_get(mhi_cntrl, false);
149 mhi_cntrl->wake_put(mhi_cntrl, true);
150 }
151
152 /* Handle device ready state transition */
mhi_ready_state_transition(struct mhi_controller * mhi_cntrl)153 int mhi_ready_state_transition(struct mhi_controller *mhi_cntrl)
154 {
155 void __iomem *base = mhi_cntrl->regs;
156 struct mhi_event *mhi_event;
157 enum mhi_pm_state cur_state;
158 struct device *dev = &mhi_cntrl->mhi_dev->dev;
159 u32 reset = 1, ready = 0;
160 int ret, i;
161
162 /* Wait for RESET to be cleared and READY bit to be set by the device */
163 wait_event_timeout(mhi_cntrl->state_event,
164 MHI_PM_IN_FATAL_STATE(mhi_cntrl->pm_state) ||
165 mhi_read_reg_field(mhi_cntrl, base, MHICTRL,
166 MHICTRL_RESET_MASK,
167 MHICTRL_RESET_SHIFT, &reset) ||
168 mhi_read_reg_field(mhi_cntrl, base, MHISTATUS,
169 MHISTATUS_READY_MASK,
170 MHISTATUS_READY_SHIFT, &ready) ||
171 (!reset && ready),
172 msecs_to_jiffies(mhi_cntrl->timeout_ms));
173
174 /* Check if device entered error state */
175 if (MHI_PM_IN_FATAL_STATE(mhi_cntrl->pm_state)) {
176 dev_err(dev, "Device link is not accessible\n");
177 return -EIO;
178 }
179
180 /* Timeout if device did not transition to ready state */
181 if (reset || !ready) {
182 dev_err(dev, "Device Ready timeout\n");
183 return -ETIMEDOUT;
184 }
185
186 dev_dbg(dev, "Device in READY State\n");
187 write_lock_irq(&mhi_cntrl->pm_lock);
188 cur_state = mhi_tryset_pm_state(mhi_cntrl, MHI_PM_POR);
189 mhi_cntrl->dev_state = MHI_STATE_READY;
190 write_unlock_irq(&mhi_cntrl->pm_lock);
191
192 if (cur_state != MHI_PM_POR) {
193 dev_err(dev, "Error moving to state %s from %s\n",
194 to_mhi_pm_state_str(MHI_PM_POR),
195 to_mhi_pm_state_str(cur_state));
196 return -EIO;
197 }
198
199 read_lock_bh(&mhi_cntrl->pm_lock);
200 if (!MHI_REG_ACCESS_VALID(mhi_cntrl->pm_state)) {
201 dev_err(dev, "Device registers not accessible\n");
202 goto error_mmio;
203 }
204
205 /* Configure MMIO registers */
206 ret = mhi_init_mmio(mhi_cntrl);
207 if (ret) {
208 dev_err(dev, "Error configuring MMIO registers\n");
209 goto error_mmio;
210 }
211
212 /* Add elements to all SW event rings */
213 mhi_event = mhi_cntrl->mhi_event;
214 for (i = 0; i < mhi_cntrl->total_ev_rings; i++, mhi_event++) {
215 struct mhi_ring *ring = &mhi_event->ring;
216
217 /* Skip if this is an offload or HW event */
218 if (mhi_event->offload_ev || mhi_event->hw_ring)
219 continue;
220
221 ring->wp = ring->base + ring->len - ring->el_size;
222 *ring->ctxt_wp = ring->iommu_base + ring->len - ring->el_size;
223 /* Update all cores */
224 smp_wmb();
225
226 /* Ring the event ring db */
227 spin_lock_irq(&mhi_event->lock);
228 mhi_ring_er_db(mhi_event);
229 spin_unlock_irq(&mhi_event->lock);
230 }
231
232 /* Set MHI to M0 state */
233 mhi_set_mhi_state(mhi_cntrl, MHI_STATE_M0);
234 read_unlock_bh(&mhi_cntrl->pm_lock);
235
236 return 0;
237
238 error_mmio:
239 read_unlock_bh(&mhi_cntrl->pm_lock);
240
241 return -EIO;
242 }
243
mhi_pm_m0_transition(struct mhi_controller * mhi_cntrl)244 int mhi_pm_m0_transition(struct mhi_controller *mhi_cntrl)
245 {
246 enum mhi_pm_state cur_state;
247 struct mhi_chan *mhi_chan;
248 struct device *dev = &mhi_cntrl->mhi_dev->dev;
249 int i;
250
251 write_lock_irq(&mhi_cntrl->pm_lock);
252 mhi_cntrl->dev_state = MHI_STATE_M0;
253 cur_state = mhi_tryset_pm_state(mhi_cntrl, MHI_PM_M0);
254 write_unlock_irq(&mhi_cntrl->pm_lock);
255 if (unlikely(cur_state != MHI_PM_M0)) {
256 dev_err(dev, "Unable to transition to M0 state\n");
257 return -EIO;
258 }
259 mhi_cntrl->M0++;
260
261 /* Wake up the device */
262 read_lock_bh(&mhi_cntrl->pm_lock);
263 mhi_cntrl->wake_get(mhi_cntrl, true);
264
265 /* Ring all event rings and CMD ring only if we're in mission mode */
266 if (MHI_IN_MISSION_MODE(mhi_cntrl->ee)) {
267 struct mhi_event *mhi_event = mhi_cntrl->mhi_event;
268 struct mhi_cmd *mhi_cmd =
269 &mhi_cntrl->mhi_cmd[PRIMARY_CMD_RING];
270
271 for (i = 0; i < mhi_cntrl->total_ev_rings; i++, mhi_event++) {
272 if (mhi_event->offload_ev)
273 continue;
274
275 spin_lock_irq(&mhi_event->lock);
276 mhi_ring_er_db(mhi_event);
277 spin_unlock_irq(&mhi_event->lock);
278 }
279
280 /* Only ring primary cmd ring if ring is not empty */
281 spin_lock_irq(&mhi_cmd->lock);
282 if (mhi_cmd->ring.rp != mhi_cmd->ring.wp)
283 mhi_ring_cmd_db(mhi_cntrl, mhi_cmd);
284 spin_unlock_irq(&mhi_cmd->lock);
285 }
286
287 /* Ring channel DB registers */
288 mhi_chan = mhi_cntrl->mhi_chan;
289 for (i = 0; i < mhi_cntrl->max_chan; i++, mhi_chan++) {
290 struct mhi_ring *tre_ring = &mhi_chan->tre_ring;
291
292 if (mhi_chan->db_cfg.reset_req) {
293 write_lock_irq(&mhi_chan->lock);
294 mhi_chan->db_cfg.db_mode = true;
295 write_unlock_irq(&mhi_chan->lock);
296 }
297
298 read_lock_irq(&mhi_chan->lock);
299
300 /* Only ring DB if ring is not empty */
301 if (tre_ring->base && tre_ring->wp != tre_ring->rp)
302 mhi_ring_chan_db(mhi_cntrl, mhi_chan);
303 read_unlock_irq(&mhi_chan->lock);
304 }
305
306 mhi_cntrl->wake_put(mhi_cntrl, false);
307 read_unlock_bh(&mhi_cntrl->pm_lock);
308 wake_up_all(&mhi_cntrl->state_event);
309
310 return 0;
311 }
312
313 /*
314 * After receiving the MHI state change event from the device indicating the
315 * transition to M1 state, the host can transition the device to M2 state
316 * for keeping it in low power state.
317 */
mhi_pm_m1_transition(struct mhi_controller * mhi_cntrl)318 void mhi_pm_m1_transition(struct mhi_controller *mhi_cntrl)
319 {
320 enum mhi_pm_state state;
321 struct device *dev = &mhi_cntrl->mhi_dev->dev;
322
323 write_lock_irq(&mhi_cntrl->pm_lock);
324 state = mhi_tryset_pm_state(mhi_cntrl, MHI_PM_M2);
325 if (state == MHI_PM_M2) {
326 mhi_set_mhi_state(mhi_cntrl, MHI_STATE_M2);
327 mhi_cntrl->dev_state = MHI_STATE_M2;
328
329 write_unlock_irq(&mhi_cntrl->pm_lock);
330
331 mhi_cntrl->M2++;
332 wake_up_all(&mhi_cntrl->state_event);
333
334 /* If there are any pending resources, exit M2 immediately */
335 if (unlikely(atomic_read(&mhi_cntrl->pending_pkts) ||
336 atomic_read(&mhi_cntrl->dev_wake))) {
337 dev_dbg(dev,
338 "Exiting M2, pending_pkts: %d dev_wake: %d\n",
339 atomic_read(&mhi_cntrl->pending_pkts),
340 atomic_read(&mhi_cntrl->dev_wake));
341 read_lock_bh(&mhi_cntrl->pm_lock);
342 mhi_cntrl->wake_get(mhi_cntrl, true);
343 mhi_cntrl->wake_put(mhi_cntrl, true);
344 read_unlock_bh(&mhi_cntrl->pm_lock);
345 } else {
346 mhi_cntrl->status_cb(mhi_cntrl, MHI_CB_IDLE);
347 }
348 } else {
349 write_unlock_irq(&mhi_cntrl->pm_lock);
350 }
351 }
352
353 /* MHI M3 completion handler */
mhi_pm_m3_transition(struct mhi_controller * mhi_cntrl)354 int mhi_pm_m3_transition(struct mhi_controller *mhi_cntrl)
355 {
356 enum mhi_pm_state state;
357 struct device *dev = &mhi_cntrl->mhi_dev->dev;
358
359 write_lock_irq(&mhi_cntrl->pm_lock);
360 mhi_cntrl->dev_state = MHI_STATE_M3;
361 state = mhi_tryset_pm_state(mhi_cntrl, MHI_PM_M3);
362 write_unlock_irq(&mhi_cntrl->pm_lock);
363 if (state != MHI_PM_M3) {
364 dev_err(dev, "Unable to transition to M3 state\n");
365 return -EIO;
366 }
367
368 mhi_cntrl->M3++;
369 wake_up_all(&mhi_cntrl->state_event);
370
371 return 0;
372 }
373
374 /* Handle device Mission Mode transition */
mhi_pm_mission_mode_transition(struct mhi_controller * mhi_cntrl)375 static int mhi_pm_mission_mode_transition(struct mhi_controller *mhi_cntrl)
376 {
377 struct mhi_event *mhi_event;
378 struct device *dev = &mhi_cntrl->mhi_dev->dev;
379 enum mhi_ee_type current_ee = mhi_cntrl->ee;
380 int i, ret;
381
382 dev_dbg(dev, "Processing Mission Mode transition\n");
383
384 write_lock_irq(&mhi_cntrl->pm_lock);
385 if (MHI_REG_ACCESS_VALID(mhi_cntrl->pm_state))
386 mhi_cntrl->ee = mhi_get_exec_env(mhi_cntrl);
387 write_unlock_irq(&mhi_cntrl->pm_lock);
388
389 if (!MHI_IN_MISSION_MODE(mhi_cntrl->ee))
390 return -EIO;
391
392 wake_up_all(&mhi_cntrl->state_event);
393
394 device_for_each_child(&mhi_cntrl->mhi_dev->dev, ¤t_ee,
395 mhi_destroy_device);
396 mhi_cntrl->status_cb(mhi_cntrl, MHI_CB_EE_MISSION_MODE);
397
398 /* Force MHI to be in M0 state before continuing */
399 ret = __mhi_device_get_sync(mhi_cntrl);
400 if (ret)
401 return ret;
402
403 read_lock_bh(&mhi_cntrl->pm_lock);
404
405 if (MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state)) {
406 ret = -EIO;
407 goto error_mission_mode;
408 }
409
410 /* Add elements to all HW event rings */
411 mhi_event = mhi_cntrl->mhi_event;
412 for (i = 0; i < mhi_cntrl->total_ev_rings; i++, mhi_event++) {
413 struct mhi_ring *ring = &mhi_event->ring;
414
415 if (mhi_event->offload_ev || !mhi_event->hw_ring)
416 continue;
417
418 ring->wp = ring->base + ring->len - ring->el_size;
419 *ring->ctxt_wp = ring->iommu_base + ring->len - ring->el_size;
420 /* Update to all cores */
421 smp_wmb();
422
423 spin_lock_irq(&mhi_event->lock);
424 if (MHI_DB_ACCESS_VALID(mhi_cntrl))
425 mhi_ring_er_db(mhi_event);
426 spin_unlock_irq(&mhi_event->lock);
427 }
428
429 read_unlock_bh(&mhi_cntrl->pm_lock);
430
431 /*
432 * The MHI devices are only created when the client device switches its
433 * Execution Environment (EE) to either SBL or AMSS states
434 */
435 mhi_create_devices(mhi_cntrl);
436
437 read_lock_bh(&mhi_cntrl->pm_lock);
438
439 error_mission_mode:
440 mhi_cntrl->wake_put(mhi_cntrl, false);
441 read_unlock_bh(&mhi_cntrl->pm_lock);
442
443 return ret;
444 }
445
446 /* Handle SYS_ERR and Shutdown transitions */
mhi_pm_disable_transition(struct mhi_controller * mhi_cntrl,enum mhi_pm_state transition_state)447 static void mhi_pm_disable_transition(struct mhi_controller *mhi_cntrl,
448 enum mhi_pm_state transition_state)
449 {
450 enum mhi_pm_state cur_state, prev_state;
451 struct mhi_event *mhi_event;
452 struct mhi_cmd_ctxt *cmd_ctxt;
453 struct mhi_cmd *mhi_cmd;
454 struct mhi_event_ctxt *er_ctxt;
455 struct device *dev = &mhi_cntrl->mhi_dev->dev;
456 int ret, i;
457
458 dev_dbg(dev, "Transitioning from PM state: %s to: %s\n",
459 to_mhi_pm_state_str(mhi_cntrl->pm_state),
460 to_mhi_pm_state_str(transition_state));
461
462 /* We must notify MHI control driver so it can clean up first */
463 if (transition_state == MHI_PM_SYS_ERR_PROCESS)
464 mhi_cntrl->status_cb(mhi_cntrl, MHI_CB_SYS_ERROR);
465
466 mutex_lock(&mhi_cntrl->pm_mutex);
467 write_lock_irq(&mhi_cntrl->pm_lock);
468 prev_state = mhi_cntrl->pm_state;
469 cur_state = mhi_tryset_pm_state(mhi_cntrl, transition_state);
470 if (cur_state == transition_state) {
471 mhi_cntrl->ee = MHI_EE_DISABLE_TRANSITION;
472 mhi_cntrl->dev_state = MHI_STATE_RESET;
473 }
474 write_unlock_irq(&mhi_cntrl->pm_lock);
475
476 /* Wake up threads waiting for state transition */
477 wake_up_all(&mhi_cntrl->state_event);
478
479 if (cur_state != transition_state) {
480 dev_err(dev, "Failed to transition to state: %s from: %s\n",
481 to_mhi_pm_state_str(transition_state),
482 to_mhi_pm_state_str(cur_state));
483 mutex_unlock(&mhi_cntrl->pm_mutex);
484 return;
485 }
486
487 /* Trigger MHI RESET so that the device will not access host memory */
488 if (MHI_REG_ACCESS_VALID(prev_state)) {
489 u32 in_reset = -1;
490 unsigned long timeout = msecs_to_jiffies(mhi_cntrl->timeout_ms);
491
492 dev_dbg(dev, "Triggering MHI Reset in device\n");
493 mhi_set_mhi_state(mhi_cntrl, MHI_STATE_RESET);
494
495 /* Wait for the reset bit to be cleared by the device */
496 ret = wait_event_timeout(mhi_cntrl->state_event,
497 mhi_read_reg_field(mhi_cntrl,
498 mhi_cntrl->regs,
499 MHICTRL,
500 MHICTRL_RESET_MASK,
501 MHICTRL_RESET_SHIFT,
502 &in_reset) ||
503 !in_reset, timeout);
504 if ((!ret || in_reset) && cur_state == MHI_PM_SYS_ERR_PROCESS) {
505 dev_err(dev, "Device failed to exit MHI Reset state\n");
506 mutex_unlock(&mhi_cntrl->pm_mutex);
507 return;
508 }
509
510 /*
511 * Device will clear BHI_INTVEC as a part of RESET processing,
512 * hence re-program it
513 */
514 mhi_write_reg(mhi_cntrl, mhi_cntrl->bhi, BHI_INTVEC, 0);
515 }
516
517 dev_dbg(dev,
518 "Waiting for all pending event ring processing to complete\n");
519 mhi_event = mhi_cntrl->mhi_event;
520 for (i = 0; i < mhi_cntrl->total_ev_rings; i++, mhi_event++) {
521 if (mhi_event->offload_ev)
522 continue;
523 tasklet_kill(&mhi_event->task);
524 }
525
526 /* Release lock and wait for all pending threads to complete */
527 mutex_unlock(&mhi_cntrl->pm_mutex);
528 dev_dbg(dev, "Waiting for all pending threads to complete\n");
529 wake_up_all(&mhi_cntrl->state_event);
530
531 dev_dbg(dev, "Reset all active channels and remove MHI devices\n");
532 device_for_each_child(mhi_cntrl->cntrl_dev, NULL, mhi_destroy_device);
533
534 mutex_lock(&mhi_cntrl->pm_mutex);
535
536 WARN_ON(atomic_read(&mhi_cntrl->dev_wake));
537 WARN_ON(atomic_read(&mhi_cntrl->pending_pkts));
538
539 /* Reset the ev rings and cmd rings */
540 dev_dbg(dev, "Resetting EV CTXT and CMD CTXT\n");
541 mhi_cmd = mhi_cntrl->mhi_cmd;
542 cmd_ctxt = mhi_cntrl->mhi_ctxt->cmd_ctxt;
543 for (i = 0; i < NR_OF_CMD_RINGS; i++, mhi_cmd++, cmd_ctxt++) {
544 struct mhi_ring *ring = &mhi_cmd->ring;
545
546 ring->rp = ring->base;
547 ring->wp = ring->base;
548 cmd_ctxt->rp = cmd_ctxt->rbase;
549 cmd_ctxt->wp = cmd_ctxt->rbase;
550 }
551
552 mhi_event = mhi_cntrl->mhi_event;
553 er_ctxt = mhi_cntrl->mhi_ctxt->er_ctxt;
554 for (i = 0; i < mhi_cntrl->total_ev_rings; i++, er_ctxt++,
555 mhi_event++) {
556 struct mhi_ring *ring = &mhi_event->ring;
557
558 /* Skip offload events */
559 if (mhi_event->offload_ev)
560 continue;
561
562 ring->rp = ring->base;
563 ring->wp = ring->base;
564 er_ctxt->rp = er_ctxt->rbase;
565 er_ctxt->wp = er_ctxt->rbase;
566 }
567
568 if (cur_state == MHI_PM_SYS_ERR_PROCESS) {
569 mhi_ready_state_transition(mhi_cntrl);
570 } else {
571 /* Move to disable state */
572 write_lock_irq(&mhi_cntrl->pm_lock);
573 cur_state = mhi_tryset_pm_state(mhi_cntrl, MHI_PM_DISABLE);
574 write_unlock_irq(&mhi_cntrl->pm_lock);
575 if (unlikely(cur_state != MHI_PM_DISABLE))
576 dev_err(dev, "Error moving from PM state: %s to: %s\n",
577 to_mhi_pm_state_str(cur_state),
578 to_mhi_pm_state_str(MHI_PM_DISABLE));
579 }
580
581 dev_dbg(dev, "Exiting with PM state: %s, MHI state: %s\n",
582 to_mhi_pm_state_str(mhi_cntrl->pm_state),
583 TO_MHI_STATE_STR(mhi_cntrl->dev_state));
584
585 mutex_unlock(&mhi_cntrl->pm_mutex);
586 }
587
588 /* Queue a new work item and schedule work */
mhi_queue_state_transition(struct mhi_controller * mhi_cntrl,enum dev_st_transition state)589 int mhi_queue_state_transition(struct mhi_controller *mhi_cntrl,
590 enum dev_st_transition state)
591 {
592 struct state_transition *item = kmalloc(sizeof(*item), GFP_ATOMIC);
593 unsigned long flags;
594
595 if (!item)
596 return -ENOMEM;
597
598 item->state = state;
599 spin_lock_irqsave(&mhi_cntrl->transition_lock, flags);
600 list_add_tail(&item->node, &mhi_cntrl->transition_list);
601 spin_unlock_irqrestore(&mhi_cntrl->transition_lock, flags);
602
603 schedule_work(&mhi_cntrl->st_worker);
604
605 return 0;
606 }
607
608 /* SYS_ERR worker */
mhi_pm_sys_err_handler(struct mhi_controller * mhi_cntrl)609 void mhi_pm_sys_err_handler(struct mhi_controller *mhi_cntrl)
610 {
611 struct device *dev = &mhi_cntrl->mhi_dev->dev;
612
613 /* skip if controller supports RDDM */
614 if (mhi_cntrl->rddm_image) {
615 dev_dbg(dev, "Controller supports RDDM, skip SYS_ERROR\n");
616 return;
617 }
618
619 mhi_queue_state_transition(mhi_cntrl, DEV_ST_TRANSITION_SYS_ERR);
620 }
621
622 /* Device State Transition worker */
mhi_pm_st_worker(struct work_struct * work)623 void mhi_pm_st_worker(struct work_struct *work)
624 {
625 struct state_transition *itr, *tmp;
626 LIST_HEAD(head);
627 struct mhi_controller *mhi_cntrl = container_of(work,
628 struct mhi_controller,
629 st_worker);
630 struct device *dev = &mhi_cntrl->mhi_dev->dev;
631
632 spin_lock_irq(&mhi_cntrl->transition_lock);
633 list_splice_tail_init(&mhi_cntrl->transition_list, &head);
634 spin_unlock_irq(&mhi_cntrl->transition_lock);
635
636 list_for_each_entry_safe(itr, tmp, &head, node) {
637 list_del(&itr->node);
638 dev_dbg(dev, "Handling state transition: %s\n",
639 TO_DEV_STATE_TRANS_STR(itr->state));
640
641 switch (itr->state) {
642 case DEV_ST_TRANSITION_PBL:
643 write_lock_irq(&mhi_cntrl->pm_lock);
644 if (MHI_REG_ACCESS_VALID(mhi_cntrl->pm_state))
645 mhi_cntrl->ee = mhi_get_exec_env(mhi_cntrl);
646 write_unlock_irq(&mhi_cntrl->pm_lock);
647 if (MHI_IN_PBL(mhi_cntrl->ee))
648 mhi_fw_load_handler(mhi_cntrl);
649 break;
650 case DEV_ST_TRANSITION_SBL:
651 write_lock_irq(&mhi_cntrl->pm_lock);
652 mhi_cntrl->ee = MHI_EE_SBL;
653 write_unlock_irq(&mhi_cntrl->pm_lock);
654 /*
655 * The MHI devices are only created when the client
656 * device switches its Execution Environment (EE) to
657 * either SBL or AMSS states
658 */
659 mhi_create_devices(mhi_cntrl);
660 break;
661 case DEV_ST_TRANSITION_MISSION_MODE:
662 mhi_pm_mission_mode_transition(mhi_cntrl);
663 break;
664 case DEV_ST_TRANSITION_READY:
665 mhi_ready_state_transition(mhi_cntrl);
666 break;
667 case DEV_ST_TRANSITION_SYS_ERR:
668 mhi_pm_disable_transition
669 (mhi_cntrl, MHI_PM_SYS_ERR_PROCESS);
670 break;
671 case DEV_ST_TRANSITION_DISABLE:
672 mhi_pm_disable_transition
673 (mhi_cntrl, MHI_PM_SHUTDOWN_PROCESS);
674 break;
675 default:
676 break;
677 }
678 kfree(itr);
679 }
680 }
681
mhi_pm_suspend(struct mhi_controller * mhi_cntrl)682 int mhi_pm_suspend(struct mhi_controller *mhi_cntrl)
683 {
684 struct mhi_chan *itr, *tmp;
685 struct device *dev = &mhi_cntrl->mhi_dev->dev;
686 enum mhi_pm_state new_state;
687 int ret;
688
689 if (mhi_cntrl->pm_state == MHI_PM_DISABLE)
690 return -EINVAL;
691
692 if (MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state))
693 return -EIO;
694
695 /* Return busy if there are any pending resources */
696 if (atomic_read(&mhi_cntrl->dev_wake) ||
697 atomic_read(&mhi_cntrl->pending_pkts))
698 return -EBUSY;
699
700 /* Take MHI out of M2 state */
701 read_lock_bh(&mhi_cntrl->pm_lock);
702 mhi_cntrl->wake_get(mhi_cntrl, false);
703 read_unlock_bh(&mhi_cntrl->pm_lock);
704
705 ret = wait_event_timeout(mhi_cntrl->state_event,
706 mhi_cntrl->dev_state == MHI_STATE_M0 ||
707 mhi_cntrl->dev_state == MHI_STATE_M1 ||
708 MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state),
709 msecs_to_jiffies(mhi_cntrl->timeout_ms));
710
711 read_lock_bh(&mhi_cntrl->pm_lock);
712 mhi_cntrl->wake_put(mhi_cntrl, false);
713 read_unlock_bh(&mhi_cntrl->pm_lock);
714
715 if (!ret || MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state)) {
716 dev_err(dev,
717 "Could not enter M0/M1 state");
718 return -EIO;
719 }
720
721 write_lock_irq(&mhi_cntrl->pm_lock);
722
723 if (atomic_read(&mhi_cntrl->dev_wake) ||
724 atomic_read(&mhi_cntrl->pending_pkts)) {
725 write_unlock_irq(&mhi_cntrl->pm_lock);
726 return -EBUSY;
727 }
728
729 dev_info(dev, "Allowing M3 transition\n");
730 new_state = mhi_tryset_pm_state(mhi_cntrl, MHI_PM_M3_ENTER);
731 if (new_state != MHI_PM_M3_ENTER) {
732 write_unlock_irq(&mhi_cntrl->pm_lock);
733 dev_err(dev,
734 "Error setting to PM state: %s from: %s\n",
735 to_mhi_pm_state_str(MHI_PM_M3_ENTER),
736 to_mhi_pm_state_str(mhi_cntrl->pm_state));
737 return -EIO;
738 }
739
740 /* Set MHI to M3 and wait for completion */
741 mhi_set_mhi_state(mhi_cntrl, MHI_STATE_M3);
742 write_unlock_irq(&mhi_cntrl->pm_lock);
743 dev_info(dev, "Wait for M3 completion\n");
744
745 ret = wait_event_timeout(mhi_cntrl->state_event,
746 mhi_cntrl->dev_state == MHI_STATE_M3 ||
747 MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state),
748 msecs_to_jiffies(mhi_cntrl->timeout_ms));
749
750 if (!ret || MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state)) {
751 dev_err(dev,
752 "Did not enter M3 state, MHI state: %s, PM state: %s\n",
753 TO_MHI_STATE_STR(mhi_cntrl->dev_state),
754 to_mhi_pm_state_str(mhi_cntrl->pm_state));
755 return -EIO;
756 }
757
758 /* Notify clients about entering LPM */
759 list_for_each_entry_safe(itr, tmp, &mhi_cntrl->lpm_chans, node) {
760 mutex_lock(&itr->mutex);
761 if (itr->mhi_dev)
762 mhi_notify(itr->mhi_dev, MHI_CB_LPM_ENTER);
763 mutex_unlock(&itr->mutex);
764 }
765
766 return 0;
767 }
768 EXPORT_SYMBOL_GPL(mhi_pm_suspend);
769
mhi_pm_resume(struct mhi_controller * mhi_cntrl)770 int mhi_pm_resume(struct mhi_controller *mhi_cntrl)
771 {
772 struct mhi_chan *itr, *tmp;
773 struct device *dev = &mhi_cntrl->mhi_dev->dev;
774 enum mhi_pm_state cur_state;
775 int ret;
776
777 dev_info(dev, "Entered with PM state: %s, MHI state: %s\n",
778 to_mhi_pm_state_str(mhi_cntrl->pm_state),
779 TO_MHI_STATE_STR(mhi_cntrl->dev_state));
780
781 if (mhi_cntrl->pm_state == MHI_PM_DISABLE)
782 return 0;
783
784 if (MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state))
785 return -EIO;
786
787 /* Notify clients about exiting LPM */
788 list_for_each_entry_safe(itr, tmp, &mhi_cntrl->lpm_chans, node) {
789 mutex_lock(&itr->mutex);
790 if (itr->mhi_dev)
791 mhi_notify(itr->mhi_dev, MHI_CB_LPM_EXIT);
792 mutex_unlock(&itr->mutex);
793 }
794
795 write_lock_irq(&mhi_cntrl->pm_lock);
796 cur_state = mhi_tryset_pm_state(mhi_cntrl, MHI_PM_M3_EXIT);
797 if (cur_state != MHI_PM_M3_EXIT) {
798 write_unlock_irq(&mhi_cntrl->pm_lock);
799 dev_info(dev,
800 "Error setting to PM state: %s from: %s\n",
801 to_mhi_pm_state_str(MHI_PM_M3_EXIT),
802 to_mhi_pm_state_str(mhi_cntrl->pm_state));
803 return -EIO;
804 }
805
806 /* Set MHI to M0 and wait for completion */
807 mhi_set_mhi_state(mhi_cntrl, MHI_STATE_M0);
808 write_unlock_irq(&mhi_cntrl->pm_lock);
809
810 ret = wait_event_timeout(mhi_cntrl->state_event,
811 mhi_cntrl->dev_state == MHI_STATE_M0 ||
812 mhi_cntrl->dev_state == MHI_STATE_M2 ||
813 MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state),
814 msecs_to_jiffies(mhi_cntrl->timeout_ms));
815
816 if (!ret || MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state)) {
817 dev_err(dev,
818 "Did not enter M0 state, MHI state: %s, PM state: %s\n",
819 TO_MHI_STATE_STR(mhi_cntrl->dev_state),
820 to_mhi_pm_state_str(mhi_cntrl->pm_state));
821 return -EIO;
822 }
823
824 return 0;
825 }
826 EXPORT_SYMBOL_GPL(mhi_pm_resume);
827
__mhi_device_get_sync(struct mhi_controller * mhi_cntrl)828 int __mhi_device_get_sync(struct mhi_controller *mhi_cntrl)
829 {
830 int ret;
831
832 /* Wake up the device */
833 read_lock_bh(&mhi_cntrl->pm_lock);
834 mhi_cntrl->wake_get(mhi_cntrl, true);
835 if (MHI_PM_IN_SUSPEND_STATE(mhi_cntrl->pm_state))
836 mhi_trigger_resume(mhi_cntrl);
837 read_unlock_bh(&mhi_cntrl->pm_lock);
838
839 ret = wait_event_timeout(mhi_cntrl->state_event,
840 mhi_cntrl->pm_state == MHI_PM_M0 ||
841 MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state),
842 msecs_to_jiffies(mhi_cntrl->timeout_ms));
843
844 if (!ret || MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state)) {
845 read_lock_bh(&mhi_cntrl->pm_lock);
846 mhi_cntrl->wake_put(mhi_cntrl, false);
847 read_unlock_bh(&mhi_cntrl->pm_lock);
848 return -EIO;
849 }
850
851 return 0;
852 }
853
854 /* Assert device wake db */
mhi_assert_dev_wake(struct mhi_controller * mhi_cntrl,bool force)855 static void mhi_assert_dev_wake(struct mhi_controller *mhi_cntrl, bool force)
856 {
857 unsigned long flags;
858
859 /*
860 * If force flag is set, then increment the wake count value and
861 * ring wake db
862 */
863 if (unlikely(force)) {
864 spin_lock_irqsave(&mhi_cntrl->wlock, flags);
865 atomic_inc(&mhi_cntrl->dev_wake);
866 if (MHI_WAKE_DB_FORCE_SET_VALID(mhi_cntrl->pm_state) &&
867 !mhi_cntrl->wake_set) {
868 mhi_write_db(mhi_cntrl, mhi_cntrl->wake_db, 1);
869 mhi_cntrl->wake_set = true;
870 }
871 spin_unlock_irqrestore(&mhi_cntrl->wlock, flags);
872 } else {
873 /*
874 * If resources are already requested, then just increment
875 * the wake count value and return
876 */
877 if (likely(atomic_add_unless(&mhi_cntrl->dev_wake, 1, 0)))
878 return;
879
880 spin_lock_irqsave(&mhi_cntrl->wlock, flags);
881 if ((atomic_inc_return(&mhi_cntrl->dev_wake) == 1) &&
882 MHI_WAKE_DB_SET_VALID(mhi_cntrl->pm_state) &&
883 !mhi_cntrl->wake_set) {
884 mhi_write_db(mhi_cntrl, mhi_cntrl->wake_db, 1);
885 mhi_cntrl->wake_set = true;
886 }
887 spin_unlock_irqrestore(&mhi_cntrl->wlock, flags);
888 }
889 }
890
891 /* De-assert device wake db */
mhi_deassert_dev_wake(struct mhi_controller * mhi_cntrl,bool override)892 static void mhi_deassert_dev_wake(struct mhi_controller *mhi_cntrl,
893 bool override)
894 {
895 unsigned long flags;
896
897 /*
898 * Only continue if there is a single resource, else just decrement
899 * and return
900 */
901 if (likely(atomic_add_unless(&mhi_cntrl->dev_wake, -1, 1)))
902 return;
903
904 spin_lock_irqsave(&mhi_cntrl->wlock, flags);
905 if ((atomic_dec_return(&mhi_cntrl->dev_wake) == 0) &&
906 MHI_WAKE_DB_CLEAR_VALID(mhi_cntrl->pm_state) && !override &&
907 mhi_cntrl->wake_set) {
908 mhi_write_db(mhi_cntrl, mhi_cntrl->wake_db, 0);
909 mhi_cntrl->wake_set = false;
910 }
911 spin_unlock_irqrestore(&mhi_cntrl->wlock, flags);
912 }
913
mhi_async_power_up(struct mhi_controller * mhi_cntrl)914 int mhi_async_power_up(struct mhi_controller *mhi_cntrl)
915 {
916 enum mhi_state state;
917 enum mhi_ee_type current_ee;
918 enum dev_st_transition next_state;
919 struct device *dev = &mhi_cntrl->mhi_dev->dev;
920 u32 val;
921 int ret;
922
923 dev_info(dev, "Requested to power ON\n");
924
925 if (mhi_cntrl->nr_irqs < 1)
926 return -EINVAL;
927
928 /* Supply default wake routines if not provided by controller driver */
929 if (!mhi_cntrl->wake_get || !mhi_cntrl->wake_put ||
930 !mhi_cntrl->wake_toggle) {
931 mhi_cntrl->wake_get = mhi_assert_dev_wake;
932 mhi_cntrl->wake_put = mhi_deassert_dev_wake;
933 mhi_cntrl->wake_toggle = (mhi_cntrl->db_access & MHI_PM_M2) ?
934 mhi_toggle_dev_wake_nop : mhi_toggle_dev_wake;
935 }
936
937 mutex_lock(&mhi_cntrl->pm_mutex);
938 mhi_cntrl->pm_state = MHI_PM_DISABLE;
939
940 if (!mhi_cntrl->pre_init) {
941 /* Setup device context */
942 ret = mhi_init_dev_ctxt(mhi_cntrl);
943 if (ret)
944 goto error_dev_ctxt;
945 }
946
947 ret = mhi_init_irq_setup(mhi_cntrl);
948 if (ret)
949 goto error_setup_irq;
950
951 /* Setup BHI offset & INTVEC */
952 write_lock_irq(&mhi_cntrl->pm_lock);
953 ret = mhi_read_reg(mhi_cntrl, mhi_cntrl->regs, BHIOFF, &val);
954 if (ret) {
955 write_unlock_irq(&mhi_cntrl->pm_lock);
956 goto error_bhi_offset;
957 }
958
959 mhi_cntrl->bhi = mhi_cntrl->regs + val;
960
961 /* Setup BHIE offset */
962 if (mhi_cntrl->fbc_download) {
963 ret = mhi_read_reg(mhi_cntrl, mhi_cntrl->regs, BHIEOFF, &val);
964 if (ret) {
965 write_unlock_irq(&mhi_cntrl->pm_lock);
966 dev_err(dev, "Error reading BHIE offset\n");
967 goto error_bhi_offset;
968 }
969
970 mhi_cntrl->bhie = mhi_cntrl->regs + val;
971 }
972
973 mhi_write_reg(mhi_cntrl, mhi_cntrl->bhi, BHI_INTVEC, 0);
974 mhi_cntrl->pm_state = MHI_PM_POR;
975 mhi_cntrl->ee = MHI_EE_MAX;
976 current_ee = mhi_get_exec_env(mhi_cntrl);
977 write_unlock_irq(&mhi_cntrl->pm_lock);
978
979 /* Confirm that the device is in valid exec env */
980 if (!MHI_IN_PBL(current_ee) && current_ee != MHI_EE_AMSS) {
981 dev_err(dev, "Not a valid EE for power on\n");
982 ret = -EIO;
983 goto error_bhi_offset;
984 }
985
986 state = mhi_get_mhi_state(mhi_cntrl);
987 if (state == MHI_STATE_SYS_ERR) {
988 mhi_set_mhi_state(mhi_cntrl, MHI_STATE_RESET);
989 ret = wait_event_timeout(mhi_cntrl->state_event,
990 MHI_PM_IN_FATAL_STATE(mhi_cntrl->pm_state) ||
991 mhi_read_reg_field(mhi_cntrl,
992 mhi_cntrl->regs,
993 MHICTRL,
994 MHICTRL_RESET_MASK,
995 MHICTRL_RESET_SHIFT,
996 &val) ||
997 !val,
998 msecs_to_jiffies(mhi_cntrl->timeout_ms));
999 if (!ret) {
1000 ret = -EIO;
1001 dev_info(dev, "Failed to reset MHI due to syserr state\n");
1002 goto error_bhi_offset;
1003 }
1004
1005 /*
1006 * device cleares INTVEC as part of RESET processing,
1007 * re-program it
1008 */
1009 mhi_write_reg(mhi_cntrl, mhi_cntrl->bhi, BHI_INTVEC, 0);
1010 }
1011
1012 /* Transition to next state */
1013 next_state = MHI_IN_PBL(current_ee) ?
1014 DEV_ST_TRANSITION_PBL : DEV_ST_TRANSITION_READY;
1015
1016 mhi_queue_state_transition(mhi_cntrl, next_state);
1017
1018 mutex_unlock(&mhi_cntrl->pm_mutex);
1019
1020 dev_info(dev, "Power on setup success\n");
1021
1022 return 0;
1023
1024 error_bhi_offset:
1025 mhi_deinit_free_irq(mhi_cntrl);
1026
1027 error_setup_irq:
1028 if (!mhi_cntrl->pre_init)
1029 mhi_deinit_dev_ctxt(mhi_cntrl);
1030
1031 error_dev_ctxt:
1032 mutex_unlock(&mhi_cntrl->pm_mutex);
1033
1034 return ret;
1035 }
1036 EXPORT_SYMBOL_GPL(mhi_async_power_up);
1037
mhi_power_down(struct mhi_controller * mhi_cntrl,bool graceful)1038 void mhi_power_down(struct mhi_controller *mhi_cntrl, bool graceful)
1039 {
1040 enum mhi_pm_state cur_state;
1041 struct device *dev = &mhi_cntrl->mhi_dev->dev;
1042
1043 /* If it's not a graceful shutdown, force MHI to linkdown state */
1044 if (!graceful) {
1045 mutex_lock(&mhi_cntrl->pm_mutex);
1046 write_lock_irq(&mhi_cntrl->pm_lock);
1047 cur_state = mhi_tryset_pm_state(mhi_cntrl,
1048 MHI_PM_LD_ERR_FATAL_DETECT);
1049 write_unlock_irq(&mhi_cntrl->pm_lock);
1050 mutex_unlock(&mhi_cntrl->pm_mutex);
1051 if (cur_state != MHI_PM_LD_ERR_FATAL_DETECT)
1052 dev_dbg(dev, "Failed to move to state: %s from: %s\n",
1053 to_mhi_pm_state_str(MHI_PM_LD_ERR_FATAL_DETECT),
1054 to_mhi_pm_state_str(mhi_cntrl->pm_state));
1055 }
1056
1057 mhi_queue_state_transition(mhi_cntrl, DEV_ST_TRANSITION_DISABLE);
1058
1059 /* Wait for shutdown to complete */
1060 flush_work(&mhi_cntrl->st_worker);
1061
1062 mhi_deinit_free_irq(mhi_cntrl);
1063
1064 if (!mhi_cntrl->pre_init) {
1065 /* Free all allocated resources */
1066 if (mhi_cntrl->fbc_image) {
1067 mhi_free_bhie_table(mhi_cntrl, mhi_cntrl->fbc_image);
1068 mhi_cntrl->fbc_image = NULL;
1069 }
1070 mhi_deinit_dev_ctxt(mhi_cntrl);
1071 }
1072 }
1073 EXPORT_SYMBOL_GPL(mhi_power_down);
1074
mhi_sync_power_up(struct mhi_controller * mhi_cntrl)1075 int mhi_sync_power_up(struct mhi_controller *mhi_cntrl)
1076 {
1077 int ret = mhi_async_power_up(mhi_cntrl);
1078
1079 if (ret)
1080 return ret;
1081
1082 wait_event_timeout(mhi_cntrl->state_event,
1083 MHI_IN_MISSION_MODE(mhi_cntrl->ee) ||
1084 MHI_PM_IN_ERROR_STATE(mhi_cntrl->pm_state),
1085 msecs_to_jiffies(mhi_cntrl->timeout_ms));
1086
1087 ret = (MHI_IN_MISSION_MODE(mhi_cntrl->ee)) ? 0 : -ETIMEDOUT;
1088 if (ret)
1089 mhi_power_down(mhi_cntrl, false);
1090
1091 return ret;
1092 }
1093 EXPORT_SYMBOL(mhi_sync_power_up);
1094
mhi_force_rddm_mode(struct mhi_controller * mhi_cntrl)1095 int mhi_force_rddm_mode(struct mhi_controller *mhi_cntrl)
1096 {
1097 struct device *dev = &mhi_cntrl->mhi_dev->dev;
1098 int ret;
1099
1100 /* Check if device is already in RDDM */
1101 if (mhi_cntrl->ee == MHI_EE_RDDM)
1102 return 0;
1103
1104 dev_dbg(dev, "Triggering SYS_ERR to force RDDM state\n");
1105 mhi_set_mhi_state(mhi_cntrl, MHI_STATE_SYS_ERR);
1106
1107 /* Wait for RDDM event */
1108 ret = wait_event_timeout(mhi_cntrl->state_event,
1109 mhi_cntrl->ee == MHI_EE_RDDM,
1110 msecs_to_jiffies(mhi_cntrl->timeout_ms));
1111 ret = ret ? 0 : -EIO;
1112
1113 return ret;
1114 }
1115 EXPORT_SYMBOL_GPL(mhi_force_rddm_mode);
1116
mhi_device_get(struct mhi_device * mhi_dev)1117 void mhi_device_get(struct mhi_device *mhi_dev)
1118 {
1119 struct mhi_controller *mhi_cntrl = mhi_dev->mhi_cntrl;
1120
1121 mhi_dev->dev_wake++;
1122 read_lock_bh(&mhi_cntrl->pm_lock);
1123 if (MHI_PM_IN_SUSPEND_STATE(mhi_cntrl->pm_state))
1124 mhi_trigger_resume(mhi_cntrl);
1125
1126 mhi_cntrl->wake_get(mhi_cntrl, true);
1127 read_unlock_bh(&mhi_cntrl->pm_lock);
1128 }
1129 EXPORT_SYMBOL_GPL(mhi_device_get);
1130
mhi_device_get_sync(struct mhi_device * mhi_dev)1131 int mhi_device_get_sync(struct mhi_device *mhi_dev)
1132 {
1133 struct mhi_controller *mhi_cntrl = mhi_dev->mhi_cntrl;
1134 int ret;
1135
1136 ret = __mhi_device_get_sync(mhi_cntrl);
1137 if (!ret)
1138 mhi_dev->dev_wake++;
1139
1140 return ret;
1141 }
1142 EXPORT_SYMBOL_GPL(mhi_device_get_sync);
1143
mhi_device_put(struct mhi_device * mhi_dev)1144 void mhi_device_put(struct mhi_device *mhi_dev)
1145 {
1146 struct mhi_controller *mhi_cntrl = mhi_dev->mhi_cntrl;
1147
1148 mhi_dev->dev_wake--;
1149 read_lock_bh(&mhi_cntrl->pm_lock);
1150 if (MHI_PM_IN_SUSPEND_STATE(mhi_cntrl->pm_state))
1151 mhi_trigger_resume(mhi_cntrl);
1152
1153 mhi_cntrl->wake_put(mhi_cntrl, false);
1154 read_unlock_bh(&mhi_cntrl->pm_lock);
1155 }
1156 EXPORT_SYMBOL_GPL(mhi_device_put);
1157